
AD8088
PROCESSOR

CARD

ALF

Processor Gald
Owne/s Manual

Gomplete Instructions
lor the

'10-5,7

AD8088 Processor Cad
including the

Formula Transfer Link
and the

Multiple Event Timer

Copydght O 1982
ALF Products lnc.

1315F Nelson Street
Denver, CO 80215

u.s.A.

Part Number 11-1.78

The information in this manual was believed to be accurate at the time of publication. Although this manual has
been carefully checked for accuracy by our inebriated technical staff, we assume no responsibility for errors or
omissions. ALF reserves the right to make changes in the product and/or specifications without notice.

AD8O88 PROCESSOR CARD
FULL 1 YEAR WARRANW

ALF Products lnc. warrants that computer programs will function as described in their associated owner's
manuals, and that all other items will be free of defects in material and workmanship. ALF will correct any fault in a
computer program (or its manual, or both) or repair or replace (at ALF's choice) any delective item free of charge for
one year from the date of sale by ALF.

To obtain warranty service, you must contact ALF at 1315F Nelson Street, Denver, Colorado 80215 or (303)
234-0871 for a servjce address. You must send the complete product, proof of purchase date, and a detailed
description of the difficulty to the service address. You pay for shipment to ALF, ALF pays for shipment back.

Any alteration of the product serial number voids this warranty. This warranty covers only ALF's products, so
where local laws permit ALF will not be liable for consequential damages.

Ask your state government for details on their "implied warranty" which also covers this product.

The tollowing statements, which shed no new meaning on this warranty, are required by Federal Trade Commission regulations and are meant to simplify warranty language: "Some

rpoclllc logll rlghls, .nd you mry al6o hlve olhor dghl3 whlch Yary lrom slala lo si!te."

CONG RATULATIONS!

Your new ADB088 Processor Card is designed to give you faultless performance for years to come. Using the
Processor Card with programs like FTL is so easy, you won't need to pay any attention to the card itself. But there
are a few features we think you might be interested in knowing. The Processor Card is constructed from top-quality
components, carefully selected for optimum performance. To make the card run cooler, several special low-power
circuits are used. All integrated circuits are installed in sockets for easy replacement should they ever fail.

The unique design of the Processor Card, made possible by ALF's years of experience in designing Apple-
compatible products, includes a careful selection of functions. Each function is included for its usefulness to the
user, not for how it will sound in an advertisement. We believe your Processor Card represents the most versatile
and reliable design at a reasonable price. Additional functions can be added by means of designed-in expansion
capability.

Your choice of the ALF Processor Card shows that you appreciate the same high standard of quality and crafts-
manship that we do. ALF's products are chosen by thoughtful and intelligent computer users around the world. We
hope you enjoy using your card as much as we've enjoyed creating it for you.

Hardware Design: John Ridges.
Software Design: John Ridges, Philip Tubb, Steve Wells.
Manual: Philip Tubb.
Graphics: Rick Harman.
Photo: Chuck Renstrom.

"Apple" is a trademark of Apple Computer lnc.

CONTENTS
1. INSTALLATION

1-1 lnstalling the card.
1-1 Tips.
1-2 Disk software.
1-2 Typing "FP".
1-2 The RAM card.
1-2 Radio-TV interference.
1-3 Using two or more cards,

2-1 lntroduction.
2-1 Using FTL.
2-1 FTL stays in memory.
2-2 ls FTL in memory?
2-2 Auto slot.
2-2 Setting up FTL yourself.

3. MET
3-1 lntroduction.
3-1 Setting up MET.
3-1 Picking a resolution.
3-2 Timing.
3-3 The MET BEAD program.

3-4 Commands.
3-4 View mode.
3-6 Plot.mode.
@hanging parameters.
Reading data directly.
Setting up MET yourself.

Memory allocation.
l/O allocation.
l/O interface status.
Expansion port.
PROM size selection.
On-board RAM expansion.
DMA technical details.
Schematic.
Repair illustration.
Photo.

2. FTL

3-6
3-7
3-7

4. PROM ROUTINES
4-1 lntroduction.
4-2 Miscellaneous commands.
4-3 The busy flag (and random).
4-4 lnteger math commands.
4-4 Floating-point math commands.
4-6 Direct calls in 8088.
4-O "Available" command codes.
4-7 The Apple Disk ll.

5. HARDWARE.
5-1
5-1
5-1
5-1
5-3
5-3
5-3
5-4
5-7
5-8

INDEX

1

INSTALL/AIION

1-1 Installation

THIS }IANUAL DOES 1{OT COVER

SUPPLIED IIITH YOUR APPLE,
COIITINUING.

USE OF THE APPLT

AI{D FAI,IILIARIZE

Processor Card

II COI{PUTER. READ THE }IANUALS

YOURSELF I{ITH ITS USE, BEFORE

1.

2.

INSTALLING THE CARD
Installation of your^ Processor Card is easy. Just follow these instructions:

Turn the Apple off and remove the top cover (see your Apple manual for
detail s).

A11 Apple-compatible circuit cards are sensitive to static electricity. Cane

should be taken to protect cards from excessive static. It is best to carry
the card in one hand, and touch objects only with the other hand (thus
avo'iding discharge thnough the card). After opening the App1e, you should
e'liminate any static charge you may have accumulated (by walking on carpets,
for example) by touching the metal power supp'ly case in the left side of the
Appl e.

3. Select which peripheral slot you wish to use. The slots are numbered from I
(left) to 7 (right). Any of the eight slots may be used. You may wish to make

a note of which slot you've selected for future neference.

4. Plug the Processor Card into the selected slot. Make sure the card plugs in
completely, but avoid using enough pressure to bend the Apple's main board.
The main Apple board can be damaged by excess'ive bending.

5. Replace the top cover (see your Apple manual for details). Installation is now
complete, and you can switch the Apple on if you desire.

TIPS
- AIrays turn. the Apple off before inserting or removing any circuit card.
Considerable damage can occur to the card and your computer otherwise.

- Some of the parts used on the Processor Card are particularly static sensitive
and may be protected by other parts on the card. Therefore, no part should be
removed from the card unless specia'l anti-static precautions are carefully
followed. Leave repairs to professionals.

- Avoid dropping the Processor Card onto a hard surface or severely jolting it.
Normal handling will not harm the card, but a jolt can chip the crystal
(suspended inside the small metal can).

Processor Card Installation I-2

DISK SOFTWARE
Software for the Processor Card is supplied on a 16-sector DOS 3.3 disk.

You may wish to make a backup copy before using the software (Federal copyright
1aw requires that you put our copynight notice on the backup copy). Programs on

the d'isk which are not described in this manual are for use with accessories
(such as the AD128K Memory Card). These programs are described jn the
accessory's manual.

If you need a DOS 3.2.1 version of this software, contact ALF.

TYPING ..FP"
Many of the programs suppljed with the Processon Card are a combinatjon of

BASIC and machine language. These programs will work properly under nonmal
c'ircumstances, but will not wonk if nun after a program which modifies the
Applesoft prognam pointers. The command FP will reset the appropriate pointens.
If you're not sure if the programs you've run recently change the program
po'inters (or if you stop a program with control-C or neset), type FP befor^e
nunning (or load'ing) any of the Applesoft programs supplied.

THE RAM CARD
FTL requires a Language Card or any of the equivalent 16K RAM cards (or

larger RAM car^ds that simulate a Language Card). Th'is card will be referned to
simply as "the RAM card"'in this manual. Note that the Apple IIe has a built-in
Language Cand equivalent.

RADIO.TV INTERFERENCE
Due to the high speeds at which the circuit operates, it naturally generates

a small amount of nadio frequency energy. Shielding in the computer's case is
designed to prevent this energy from escaping. Although the Pnocessor Card and
the Apple computer have been carefully designed to reduce emission, radio
interference might possibly occulin unusual s'ituations. You can determine if
the computer is the source of interference by turning it on and off and
observing whether the interference stops and stants. Reorienting te1evision or
radio antennas, or moving the radio or computen to a different location or
electrjcal outlet might solve any intenference problem. A booklet "How to
Identify and Resolve Radjo-TV Intenference Problems", number 9\4-ggp-90345-4, is
available from the U.S. Government Printing 0ffice, Washington, DC 29492. If you
think th'is rambling paragraph is silly but required by government regulations,
you're ri ght.

1-3 Installation Processor Card

USING TWO OR MORE CARDS
When two or more AD8p88 Processor Cards are used in one Apple, the DMA

daisy chain must run through each card. This allows the cards to access the
Apple's memory one at a time in a contnolled fashion. The daisy chain is
"broken" by an empty slot or a card which doesn't connect DMA IN to DMA OUT (the
edge contacts on each side of the card, second set from the back).

If all cards in your Apple have the DMA lines pnoperly connected, just make

sure there are no empty slots between Processor Cands (ttrat is, all empty slots
are at the far left on right). If you suspect the DMA lines may not be properly
connected on some of your peripheral cands, just be sune to plug all Processor
Cards in adjacent slots.

2
FTL

2-L FTL Processor Card

INTRODUCTION
FTL, the Formula Transfer Link, is a program that routes Applesoft math

functions to the Processor Card for computation. Since the 8088 processor is
faster than the Apple's 6592 processor, the math functions are computed more
quickly. FTL actually cons'ists of three programs. One program, located in the
RAM on the card, is written in 8988 machine language. It performs some of the
mathematjcal computations, and calls routines in the card's ROM to penform the
other computat'ions. Another "pnogram", located inside the Applesoft language
itself, is written in 6592 machine language. It consists of small "patches" at
the beginn'ing of each math routine in Applesoft, and each patch routes the
particular math function to the Processor Card. The third program is the FTL
program supplied on disk with the card. It loads the other two programs into
their appropriate memory locations so they can be used.

USING FTL
If you've already booted up and now wish to use FTL, you simply insert the

supplied disk (see the instructions in the Installation section) and type RUN FTL.
The FTL program w'ill ask which slot your AD8p88 Processor Card is in. Type the
slot number and press return. All necessary set-up wi'11 then be penformed by

the program.
If your computer has Integer BASIC in R0M, you must already have Applesoft

BASIC in your RAM card (or a LANGUAGE NOT AVAILABLE message will be printed).
Instructjons for loading Applesoft into your RAM card are given jn the DOS 3.3
manual. The FTL program will unpnotect the RAM card, make the necessary
changes to the App'lesoft language, and reprotect the RAM card.

If your computer has Applesoft BASIC in R0M, the FTL program will unprotect
the RAM card, copy ROM Applesoft into the RAM, make the necessary changes to the
Applesoft language, and protect the RAM card.

FTL STAYS IN MEMORY
0nce you've nun FTL, it will stay in memory even as you run various

Applesoft programs. Thus, you can run as many Applesoft programs as you 1ike,
and they will all nun faster. The following things will cause FTL to be lost: (1)

turning off the Apple, (2) booting up with DOS 3.3, (3) loading or running an

Integer BASIC program or typ'ing INT, if your computer has Applesoft in ROM, (4)
running any program that changes the contents of the RAM card (or which bank js
enabled), or (5) running a different Processon Card program (such as MET). If
you do any of these things, you will need to run the FTL pnognam again next time
you wish to use it.

Booting up a DOS 3.3 disk causes FTL to be lost because the DOS 3.3 boot-up
procedure erases the RAM card. DOS 3.2 doesn't erase it. There's no apparent
reason for D0S 3.3 to do this, but fortunately the erase routine'is easily
removed. To in'itial'ize a new DOS 3.3 disk that doesn't erase the RAM card,

Processor Card FTL 2-2

simply type P0KE -16429,173 (on a 48K Apple) before us'ing the INIT command. If
you have Applesoft in ROM, you must also do P0KE -L6432,9 and P0KE -16435,p
before INIT to keep DOS 3.3 from switching to ROM Applesoft. Copy-protected DOS

3.3 disks are a problem since you can't remove the erase routine. Unless the
software supplier has already nemoved the erase routine, you won't be able to
use FTL with programs on a copy-protected DOS 3.3 disk.

If you type INT or try to load or run an Integer BASIC program on an App'le

w'ith Applesoft in R0M, FTL will be lost as iust mentioned. (If your Apple has

Integer BASIC in R0M, you'11 be able to swjtch between Integer BASIC and

Applesoft-with-FTL as usual.) 0n an Apple IIe, th'is also occurs eveny time RESET

is pressed. If this happens, you can recover FTL iust by typing ?PEEK(-16256).

If you prefer, you can use PRINT PEEK(-16256) 'instead. Don't try this peek on a

computer with Integer BASIC in ROM (of course, there's no need to).

IS FTL IN MEMORY?
You can tell whether FTL'is active or not by typing ?7n2 and pressing

return while in Applesoft (l prompt). (If you 1ike, you can type PRINT 7n2
instead.) When 49.99PPPQI is printed, FTL is not in memory. When 49 is printed,
FTL is active. The results are different because FTL uses djfferent algorithms
than Applesoft does. The results w'ill differ only very sf ightly.

AUTO SLOT
The FTL program can be set to use a panticular slot when it js run rather

than ask you for the AD8g88 slot. This would be desirable if you're not going to
move the Processon Card from slot to slot frequent'ly. As an example,'let's
assume your Processor Cand is in slot 3. To set FTL to use only slot 3 you

would type:

lrP
]LOAD FTL

lLrsT L9

10 SL0T = 8

119 SLOT = 3

]SAVE FTL

(the computer prints this line and the I prompts)

Now when you run FTL it won't ask for the ADBP88 slot. To
(with FTL asking for the slot number), put the SLOT = 3. back

the same procedure as above.

go

to
back to normal
SLOT = 8, using

SETTING UP FTL YOURSELF
You can have your own program set up FTL automatically. Finst, poke the

slot number of the AD8p88 card times 16 into memory location 6. Next, BLOAD

FTL.B into memory and call it. For example, in an App'lesoft program for a 48K

2-3 FTL Processon Card

Apple with the ADB988 card in slot 3, you could use:

lp POKE 6,48 : PRINT CHn$(4);"BL0AD FTL.B,A37I2P" : CALL 37L29

In this example, your prognam must not use any string variables before the above
line is executed, because the FTL.B prognam 'is BLOADed into the string variable
area. The FTL.B program can be loaded into any memory area that doesn't
conflict wjth anyth'ing else and where 1299 bytes are available (just subst'itute
the appropriate address after the ",A" in the BL0AD and after the "CALL").

The FTL.B program can easily be moved to another disk. Load it into
memory by typing BL0AD FTL.B,A37120 and then save it on the desired disk by

typing BSAVE FTL.B,A37IzP,LLZPP (48K is required to load at this address).
Remember you must have a label that reads "FTL @ 1982 by ALF" on any disk you
put the FTL.B program on. If you plan to se11 yout'p1'ogram and wish to put
FTL.B on the disks to be so1d, contact ALF for a license agreement.

3
MET

3-1 MET Processor Card

INTRODUCTION
MET, the Multiple Event Timer, is a program that allows the Processor Card

to be used as a timer. MET is written entinely in 8088 machine language. It
doesn't access the Apple's memory while it is set up for t'iming, and thus doesn't
affect execution speed of the Apple's processor. This allows it to be used to
measure the execution time of programs or routines being run by the Apple's
processol^. 457 events can be stored with 2K of RAM on the Processor Cand (1149

events with 4K, 1823 with 6K, and 2595 wjth 8K).

SETTING UP MET
The MET program can be set up simply by inserting the supplied disk (see

the instructjons in the Installation section) and typing RUN MET. Note that MET

cannot be used wh'ile FTL is active (unless FTL is used on one Processor Card
and MET on anothen, w'ith MET set up before FTL). The message "FTL IN USE."

wjll be pn'inted if this is attempted. Normally, the set-up prognam asks for the
AD8p88 slot and fon the desired t'ime resolut'ion. The choices for time resolution
a re:

NUMBER TO TYPE RESOLUTION
p 50 mjcnoseconds
1 199 ntcroseconds
2 599 nicroseconds
3 1 millisecond
4 5 m'illiseconds
5 10 milliseconds
6 59 mi I I'iseconds
7 L99 nilliseconds

DURATI0N (per event)
seconds
seconds
seconds

seconds
seconds
seconds
seconds
seconds

MAXIMUM

3.27 68

6.5536
32.768
65. 536

327 .68
655.36

3 ,27 6.8
6,553.6

PICKING A RESOLUTION
One microsecond is a millionth of a second. One millisecond is a thousandth

of a second. Let's consider the L99 millisecond resolution setting. IPp
mill'iseconds'is .1 seconds. If the interval being timed is any duration less than
.1 seconds, MET wil1 store'it as tak'ing.1 seconds. Any interval .1 to under.2
seconds jn duration will be stored as .2 seconds, and so forth. Since MET uses
numbers from l to 65,536 to store the duration measurements, wh'ile in the LPP

mjllisecond resolution modeit can stone durations from .1 (1 times .1) to 6,553.6
(65,536 times.l) seconds. Longer durat'ions will "wrap around", So a 6,553.7
second duration would be stored as.1 seconds,6,553.8 would be stored as .2,
and so forth.

Generally, you'11 want to pick the smallest resolution that won't wrap
around. For example, if you expect to time events that will take up to Lp
seconds, you'I1 want to use the sPP microsecond resolution since it can time up

Processor Card MET 3.2

to 32 seconds. Ihe L99 microsecond resolution is too small since 'it can only
time up to 6 seconds. If resolution is critical, you can use the smallest
resolution even though it might wrap around. For example,'if you're timing
something that takes about 5 seconds, you could use the 5P microsecond settjng
and remember to add 3.2768 seconds to the result obtained.

It is important to avoid resolutions which are too 1arge. 0n1y one event
may occur in each resolution jnterval. For example, with LPP millisecond
nesolution, if two events are sent to the 8088'in the same IpP millisecond
interval, only the last one will be recorded.

TIMING
Aften MET is set by typing RUN MET, you are ready to begin timing. Each

event is signaled to the 8088 by writing a reference number to one of its
memory addresses. The memory address to use is SL0T*16-16255 where SLOT is
the slot number of the AD8p88 card (0-7). The first poke to that address begins
timing, and each subsequent poke causes MET to store the numben poked and the
time since the previous poke. (The first number poked, whjch starts the timing,
is not stored.) For example, let's say we want to time how long the statement
A=7^2 takes to execute. We'll need the smallest resolution, so we RUN MET and

ask for resolution numben 0. If the AD8088 is in slot 3, we need to poke at
3*I6-L6255, which is -16297. Now, type in this pl'ogram:

FP

1p POKE

3p POKE

RUN

-L62p7 ,p
-L62p7 ,L

(ready fon a new program)
(start timi ng)
(stop ti m'i ng)

Notice ljne 29'is skipped. This is where we will put the statement we want to
time, but first we need to know how much ovenhead there is. MET stored the
reference number 1 and the time it took between pokes when we ran the program.
It is now tjming how long it will be until the next poke. We type:

29 A=7nZ

RUN

(the statement we want to time)

The two pokes are still there, with line 29 between them. MET has now stored
how long it took us to type the ljne and type RUN, and this is stored with
reference numben 0. The t'ime to run line 2P, plus the overhead, is stoned
with reference number 1. Let's also time A=7*7. We type:

29 A=7*7
RUN

(new statement to time)

3-3 MET Processor Card

Again, MET times how long it took to type the ljne and stores that with reference
number 9. The timing for the new line 29 is stored with a I reference number.
Now we can type RUN MET READ to see the results. After asking fon the AD8p88

slot numben, MET READ will read the data from the Processor Card, and then show

an = prompt. Type VIEW to see the data. The program shows:

VALUE

pi
IP
2L
39
4I

.p5MS

159

36967

LI5p
41 348

236

TOTAL TIME

159

37126
3827 6

79624
79869

The lines with VALUE's of I represent typing time, so they'11 vany quite a bit
f rom one try to another. The other t'imes may vary sl'ight1y, and of counse the
T0TAL TIMEs will change to match the times shown. Event #0 shows 159 times 59

microseconds ("MS" means m'illiseconds, and .P5 millseconds equals 5P

m'icroseconds), or 7,959 microseconds. This is the amount of processing t'ime
between the two pokes; mostly spent turning -L6297'into binary. Note that the
actual time could have been as l'ittle as 7,999 mjcroseconds, since MET rounds up

to the next 50 microsecond interval (when in 50 microsecond resolution). Also,
the crystal time base used has an accunacy of plus or minus P.PL%, which in this
case would be plus on minus 9.795 microseconds.

Event #2 shows 115p intenvals and is the t'iming of the A=7nZ statement plus
the poke processing. Subtnact'ing the 159 intervals of poke processing leaves 991

intervals (49,55p microseconds) of processing time 'in the A=7^2 statement.
Event #4 shows 236 intervals, which minus the 159 poke pnocessing t'ime is

77 intervals (3,859 microseconds) for the A=7*7 statement. As you can see,7*7
'is a much faster way to square 7 than 7hZ is. To give you an idea of how many

65PZ machine instructions the Apple is nunning to make the computations, it has
an average speed of L,929,599 cycles per second (.9799 microseconds per cycle).
The fastest instruction takes 2 cycles, and the slowest takes 7.

If you used one Processor^ Card for FTL and another for MET, you could see
that with FTL 7*7 takes 3,259 microseconds and 7nZ takes 3,69P m'icroseconds.
Th'is is because the 8088 is faster than the 65P2, and because FTL uses a more
intelligent exponentiation algorithm than Applesoft.

THE MET READ PROGRAM
The MET READ program is a conven'ient way to quickly examine timing data

e'ither in numeric or plotted form. The MET READ pnogram also obtains the timing
data from the Processor Card automatically, and allows 'it to be saved to disk
and loaded f rom disk. The program is run simply by typi ng RUN MET READ (see

Processor Card MET 3.4

the Installat'ion section for disk infonmat'ion). 0nce run, MET READ will ask for
the slot number of the AD8p88. Type the slot number, or type 8 if you do not
have the AD8p88 installed at the moment. A message indicating whether or not
data was read from the Processor Card and whether or not data present in
memory seems to be in MET format will be d'isplayed. Then an = prompt appears,
and the program is ready to accept commands. Generally, numbers may be given

in decimal or in hexadecimal. Hex numbers must be preceded by a dol1ar sign ($).

COMMANDS
The SAVE command saves the timing data currently in memory to disk as a

"B" fjle. It js used the same as the SAVE command'in BASIC. Examples: SAVE

TEST FILE oT SAVE TEST FILE,DZ.

The L0AD command loads timing data previously saved with the SAVE command

(above) into memory. It is used the same as SAVE. Examples: L0AD TEST FILE or
LOAD TEST FILE,D2.

The CATAL0G command is used to see a catalog of prognams on d'isk. It is
the same as the CATAL0G command in DOS 3.2 or DOS 3.3. Examples: CATALOG or
CATALOG,D2.

The DELETE command is used to delete a program from the disk. It is the
same as the DELETE command in DOS 3.2 or DOS 3.3. Examples: DELETE TEST FILE

or DELETE TEST FILE,D2.
The VIEI{ command 'is used to see the timing data in numeric form. It has

various commands which are described below.
The PL0T command is used to see the timing data in plotted fonm. It has

various commands wh'ich are described below.
The QUIT command is used to leave MET READ and go back to BASIC. To use

MET READ after typ'ing QUIT, it must be loaded from disk again.
The HELP command lists the ava'ilable commands.

VIEW MODE
When in view mode, the top of the screen displays several lines of timing

data, and the bottom is used to type in commands. The headjng at the top of the
screen could read:

VALUE .P5MS TOTAL TIME

In the # column the consecutive event number (starting with D tor each event is
shown. In the VALUE column is the reference value for each event. The next
column'is the event duration, in whatever units are shown jn the heading.
Finally, in the T0TAL TIME column the total of all event durations so far is
shown. The following commands are available from view mode:

The -) key is used to see one mone event. The screen rolls up one line so
the new event can appear near the bottom of the screen.

The (- key is used to see one previous event. The scneen rolls down one
line so the previous event can appear near the top of the screen.

3-5 MET Processor Card

Note that the) and (- keys can be used to scnoll the scneen only when the
flashing cursor is not present. (When the cursor is present, these keys ane used

as backspace and forward space as usua1.) Pressing the return key will remove

the flashing cursor and allow the -) and (- keys to be used for scroll'ing.
The G0 T0 command is used to begin viewing with the desired event. The

consecutive event number to begin the d'isplay wjth must be specified. Example:

G0 T0 25 (the djsplay begins w'ith event # 25, the 26th event).
The UI{ITS command is used to select what unit of time all durations will be

shown in. UNITS AUT0 selects the resolution the MET program was set for when

the data was recorded. UNITS MS selects milliseconds. UNITS SEC selects
seconds. UNITS MIN selects minutes.

The EVENTS command is used to limit the display to a panticular range of
consecutive event numbers. Also, T0TAL TIME will be computed starting with the
first event in the range selected. A dash is used to sepanate the first and'last
event numbers to be displayed. Thjs command also affects the DUMP and PRINTER

commands. Examples: EVENTS 59-LPP (show only events 5p through IUP, inclusive)
or EVENTS -LPP (show events I through L0il or EVENTS - (show all events) or
EVENTS 5p- (show all events fnom # 59 on).

The VALUES command is used to limit the display to a particular range of
reference values. A dash is used to separate the lowest and highest reference
values to be used. 0n1y events w'ith reference values in the specified range will
be displayed. This command also affects the DUMP and PRINTER commands.
Examples: VALUES \P-IPP (show only events with values from 50 to I99,'inclusive),
VALUES -109 (show only events wjth values 0 through L\il or VALUES - (show all
events) or VALUES 5p- (show only events with values 5p thr"ough 255).

The BASE command is used to select the display base for the VALUE column.
BASE DEC selects decimal, and BASE HEX selects hexadecimal. All hexadec'imal
numbers ane preceded by a $ when displayed.

Note that the UNITS, EVEilTS, VALUES, and BASE commands w'ill show their
current settings'if the command is typed alone (just UNITS, EVENTS, VALUES, or
BASE and press return).

The DUMP command is used to create a text or "execute" file on disk
containjng the reference values and durations of all events selected for display
by the EVENTS and VALUES commands. It is used the same as the SAVE command
(above.) The first l'ine in the text file contains a number from 9 to 7 indicating
the resolution MET was set fon when the data was reconded, a comma, and a

numbelindjcating the number of events whjch follow. Each event'line conta'ins a

number from I to 255 lndicating the reference value, a comma, a number from I
to 65536'indicating the duration sjnce the pnevious event (in time units as
specified by the resolutjon ind1catjon in the first text line), a comma, and a

number from l to 16416768P indicating the "total time" (in the same units as the
duration). The last line is -1,-1,-1 to'indicate the end of the file. Command

examples: DUMP FINAL DATA on DUMP FINAL DATA,DZ

Processon Card MET 3.6

The PRINTER command is used to print the events selected by the EVENTS and

VALUES commands to a PR#-compat'ible printer. The slot number of the printer
must be specified. Each page will begin w'ith two blank ljnes, the heading,
anothen blank line,60 lines of events (changeable as described below), and two
blank lines. Command example: PRINTER 1.

The EXIT command'is used to exit view mode and return to the main
program. To exit to BASIC, type QUIT.

PLOT MODE
When in plot mode, the top part of the screen is in high-resolution graphics

mode showing a plot of the timing data; and the bottom pant of the screen is
used for typing commands. The horizontal axis of the plot shows various time
dunations, and the ventjcal axis shows the number of events with a given
duration. The ljnes below the graphics area indicate the scale of each axis and

the range of the honizontal axjs. For example,
lP EVENTS/DIV 5P SEC/DIV

TrMES.pl-655.36
'indicates the vertical ax'is has Ip events pen division (each division is indicated
by a m'issing dot in the vertical axjs), the horizontal axis has 5P seconds per
divis'ion (each division is indicated by a dot below the horizontal ax'is), and the
range of times shown is .PI seconds to 655.36 seconds. The same plot might be

shown as:
lp EVENTS/DrV

TrMES 1-65536
sppp (rpt4s)lDru

wh'ich means lp events per division, 5099 tjmes 10 milliseconds (5p seconds) per
division, and t'imes from l tjmes 10 m'illiseconds (.01 seconds) to 65536 times 10

milliseconds (655.36 seconds). Note that the display does not show an integral
number of djvisions ejther vertically or horizontally. The followjng commands

are available f rom plot mode:

The UNITS, EVENTS, VALUES, EXIT, and QUIT commands are the same as in view
mode. Settings made while in view mode will canry over to plot mode and vice
ve rsa.

The TIMES command selects a nange of durations to be displayed. (The

current TIMES settjng'is always displayed on the next-to-top text l'ine.) The

cunrent UNITS command setting specifies what units the TIMES range should be
given'in. Numbers can contain a decimal po'int, but may not be jn hexadec'imal.
Example commands while in UNITS SEC sett'ing: TIMES 59-199 (shows durations from
5P seconds to LPP seconds, inclusive) or TIMES -lpp (shows durations up to and
including IPP seconds) or TIMES - (shows all durations) or TIMES 5p- (shows
durat'ions from 5P seconds up).

CHANGING PARAMETERS
Both the MET program and the MET READ program have parameters in ljne I9

3-7 MET Processor Card

that can be changed 'if desired. Thjs is done by loading the prognam, f isting
line 19, retyping the line changing only the appropriate numbers, and saving the
program. Ne'ither prognam should be changed after it has been run. The length
of ljne 19 must remain the same. If necessary, leading 0's should be added to
numbers. For example, line 19 'in MET reads:
lp SL0T = 8 : BUFFER = 26624 : TIME = 8

To change buffer to 8192, type:
lp SL0T = 8 : BUFFER = pgI92 : TIME = 8

The SLOT value is the slot number the Processor Card js plugged into, or 8 to
have the program ask for the slot number. The BUFFER value is the memory

address where the 8088 will wnite the t'iming data when commanded to do so, or
(for MET READ) the address where the timing data is expected to be. (BUFFER must

the set the same in MET and MET READ if MET READ will be used to read the data.
26624 is virtually the only addness MET READ can use.) If BUFFER is set to 9,
the prognam will ask for the buffen address. The TIME value (not present 'in MET

READ) js the desired nesolution (9 to 7) on 8 to have the program ask for the
resolution. In MET READ, there is also a line 29 which can be changed in a

s'im'ilar f ash jon. It is 20 LINES = 66 and it 'indicates the desi red number of
lines pen page when the PRINTER command is used. Again, care must be taken that
the length of the ljne js not changed.

READING DATA DIRECTLY
If you do not wish to use MET READ to nead the tim'ing data, you can read it

yourself, When 248 (hex F8) is poked at location SL0T*16-16256 (where SL0T is
the slot number the Processor Card'is plugged into), the 8088 will write the
timing data into memory, starting at the address indicated by BUFFER in the MET

program. (Sending a 0 to this address will cause the data to be discarded and
MET to be stopped.) The first byte of data w'ill be the resolution selected plus
48. The next two bytes will be the'length of the data (th'is numben div'ided by 3

m'inus I indjcates the number of events which follow). All following bytes are
the events, consisting of one byte indicatjng the reference value and two bytes
ind'icating the time since the previous event (or, for the first event, the time
since the "start" command). A 65536 duration is stored as p. The time is given
jn units as specified by the selected resolution. All two byte numbers appean
1ow byte first. There is no end marker in the data.

SETTING UP MET YOURSELF
You can have your own App'lesoft program set up MET automat'ical1y. First,

poke the slot numben of the AD8088 card times 16 into memony location 6. Poke
the desired resolutjon (9 to 7) into locat'ion 7. Poke the buffer address (whene

the timing data will eventually be stored) into locations 8 (low byte) and 9 (high
byte), use 26624 if you will be reading the nesults with MET READ. Next BLOAD

MET.B jnto memory and call it. For example, in an Applesoft program fon a 48K

Processor Card MET 3-B

Apple with the AD8p88 card jn slot 3, you could use:
1p POKE 6,48 : POKE 7,p : P0KE 8,IL2: POKE g,IPz

2P PRINT CHR$(4);"BL0AD MET.B,A37888" : CALL 37888

In th'is example, your program must not use any string variables before the above
lines are executed, because the MET.B program is BL0ADed into the string
variable anea. The MET.B program can be loaded into any memory area that
doesn't confl'ict wjth anything else and where sPP bytes are avajlable (just
substitute the approprjate address after the ",A" in the BLOAD and after the
"cALL").

The MET.B program can easily be moved to another disk. Load it into
memory by typing BLOAD MET.B,A37888 and then save it on the desired disk by

typing BSAVE MET.B,A37888,L59P (48K is nequired to load at this addr"ess).
Remember you must have a label that reads "MET @ L982 by ALF" on any disk you
put the MET.B program on. If you plan to se11 your program and wish to put
MET.B on the disks to be sold, contact ALF for a license agreement.

If MET is loaded and timing is stopped (by sending a 9 to location SL0T*16-
16256 or by read jng the tjming data), 'it can be nestanted with any desi red
resolution by poking the resolution numben plus 48 to location SL0T*16-16256.
This wlll work only if MET is still loaded in the 8088's RAM (prognams like FTL
remove MET).

4
PROM ROUTI NES

4-1 PROM Routines Processor Card

INTRODUCTION
Communjcat'ion with the Pnocessor Card'is done mainly through 16 I/0 ports,

at Apple memory addresses Cpxp (where x is 8 for slot I to F for slot 7, and p

'is the port numb€r, I to F). In decimal, SL0T*I6-L6256+P (where SL0T is the slot
number, I to 7, and P is the port numb€r,9 to 15). Data can be written to any

of these ports. When port I is read, the most significant bit (bit 7) is 0 if the
ports should not be written to or 1 if the Processor Card is ready to receive
data. Bits 6 through I of the data read from port I ane random. Ports I through
15 should not be read.

The following conventions of the PROM routines are recommended for all
8p88 programs. (1) Port 0 is used as the command register. All other ports are
used to pass parametens. (2) Sending a p to port I causes any 8988 pr^ogram to
stop operation and jump to the main PROM idle 1oop. (3) t,lhenever the most
significant bit of the data read from port g is 1 (i.e., the card is neady to
accept data), the 8988 is not accessing the 6592's memory (and so speed critical
Apple noutines can proceed).

The 1-9-1-1 PROM routines use the 15 panameter ports to set 15 stored
parameters. Commands sent to the command port can access parameters already
set via the 15 parameter ports. The ports are assigned as follows:

Port Functi on

p Commands.

1-11 Reserved for the lp-5-8 Graphics Subsystem.
LZ Address A (1ow byte).
13 Address A (h'i gh byte) .
14 Address B (1ow byte).
15 Address B (hi9h byte).

The commands are as follows:

Decimal Hex

p

t-28
29-32
33-47
48-247
248
249-259
25r-255

99
pl-1C
rD-29
2I.2F
30-rt
F8

F9.FA
FB.FF

Functi on

Reset to main idle 1oop.
Reserved for the 1p-5-8 Graphics Subsystem.
2-byte integer math functions.
S-byte floating-point math functions.
(Avai 1 ab1 e.)
Reserved for MET.

Reserved f on spec'ia1 f uncti on.
M'i scel I aneous.

Processor Card PR0M Routines 4-2

MISCELLAN EOUS COMMAN DS
The SEQUENCE command (code 25I or FB) is used to have the Processor Card

read and execute a sequence of commands in the Apple's memory. A5ldress B must

already be set to point to the command sequence. Each command in the sequence

must consist of two bytes. The first byte indicates which port number (0-15) the
second byte applies to. For example, the bytes 9E 27 jn a command sequence

would have the same effect as sending a 27 to port E (14). Another SEQUENCE

command in the command sequence causes any remaining commands in the sequence

to be ignored; processing continues at the address specified by the new SEQUENCE

command. A sequence is ended by placing a RESET command in the sequen ce (PP

pD.
The RAI{D0M command (code 252 on FC) is used to obtain a "random" number.

Address B must already be set to the Apple memory address where the 1 byte
result w'ill be stored. All 8 bits in the stored result will be "random". The

formula used is NEW p119=(0LD RND * 2 + (BIT 2 XOR BIT 3p)) MOD 2L47483648,
where BIT 2 and BIT 3p ane b'its 2 and 3P from OLD RND. This formula is run
continuous'ly by the main idle loop. The least significant 8 bits of NEl,l RND are
returned by the RANDOM command.

The SET tlEM0RY command (code 253 or FD) 'is used to set a block of 8088 or
Apple memory to.a selected value. Address B must a1r'eady be set to the Apple
memory address where the following table is located. The first four bytes'in
the table are a 4-byte memory reference indicating the start of the memony area
to set. The next two bytes are the length of the memory area to be set, low
byte first. The last byte 'in the table is the value to be written into the block
of memory.

The l{0VE DATA command (code ?54 or FE) is used to move a block of data
from one place in memory to another. Address B must already be set to the Apple
memory address whene the following table is located. The first four bytes in
the table are a 4-byte memory refenence'indicating the destination memory

address. The next four bytes are a 4-byte memory reference jndicating the
source memory address. (Data is moved from the source area to the destination
area.) The source and destination areas must not overlap if the destination
address is greater than the source address. The final two bytes jnd'icate the
number of bytes to move, 1ow byte first.

The CALL command (code 255 or FF) is used to cause the 8p88 to call a

subroutine from the main idle 1oop. When the subroutine returns (using an inter-
segment retunn), the ma'in idle loop wi'll continue. Address B must already be set
to the Apple memony address where a 4-byte memory reference (the address to
call) is stored.

The f irst two bytes of a tl-byte memory reference are the address of an

Apple memory location or the offset of an 8p88 memory location, low byte first.
The final two bytes are the 8088 segment number, 1ow byte first. Apple memony
'is accessed wjth a segment number of L999 hex on 4996 decimal.

4-3 PROM Routines

THE BUSY FLAG (AND RANDOM)
Note that before a command is sent, the busy flag

typical assembly language routine to read a random number

be:

Processor Card

must be examined. A

into location 15 might

RANDOM

BUSY

LDX SLOT16

JSR BUSY

LDA #15
sTA $Cp8E,X
JSR BUSY

LDA #9

sTA $Cp8F,X
JSR BUSY

LDA #?52
STA $CP8P,X
JSR BUSY

LDA 15

RTS

LDA $CP8P,X
BPL BUSY

RTS

sL0T16 CONTAINS AD8p88 SL0T NUMBER * 16.

WAIT UNTIL AD8P88 IS READY.

SEND LOW BYTE OF ADDRESS B.

WAIT UNTIL AD8P88 IS READY.

SEND HIGH BYTE OF ADDRESS B.

WAIT UNTIL AD8P88 IS READY.

SEND RANDOM NUMBER COMMAND.

WAIT UNTIL RESULT IS IN APPLE MEMORY.

PUT RANDOM NUMBER IN A.
RETURN TO CALLING ROUTINE.

READ BUSY/READY STATUS.

(AD8p88 rS BUSY, S0 WArT.)

AD8P88 IS READY, SO RETURN.

Integer BASIC and Applesoft BASIC are so slow that it is generally not
necessary to check the busy flags when using the RANDOM command. (The RAND0M

command can be used while FTL is active, but not whi'le timing w'ith MET.) From

BASIC, POKE SL0T*16-16242,6 : POKE SL0T*16-1624I,p is used to set up address B

any time before random numbers will be needed. To obtain a random number, use
POKE SL0T*16-16256,252: R=PEEK(6). Note that SLOT must be the AD8088 slot
number (9 to 7) and R will be set to a random'integer from I to 255. To get n

random integers with the smallest result being x, use INT(R/256*N)+X in Applesoft
BASIC or R*N/256+X in Integer BASIC. In Integer BASIC, n must be less than I28.
When x is 9, th'is formula gives the same range as Integer BASIC's RND(N), except
Integer BASIC's random algorithm repeats much sooner than the AD8088's algorithm
and so the AD8088's numbers may appear more "random". In Applesoft BASIC, n
must be less than 257. POKE SL0T*16-L6256,252: R=PEEK(6): POKE SLOT*16-
L6256,252 : R=R+256*PEEK(6) can be used to get a random integer from I to 65535
and thus INT(R/65536*11)+X can be used for values of n up to 65536 or for more
even distribution for small values of n where 256/n is not an integer. Note that
the sequence of numbers from the AD8088's nandom is not repeatable (especially
si nce new random numbers are continuously computed by the main 'idle I oop),
whereas Applesoft only has repeatable sequences. The AD8088's random can be a

significant advantage where repeatable (or pnedictable) numbers are not desired.

Processor Card PROM Routines 4-4

INTEGER MATH COMMANDS
The UNSIGT{ED INTEGER IIULTIPLY command (code 29 or lD) is used to multiply

two unsigned 2-byte integers. Addness B must already be set to the Apple memory

address where the two mult'ip'licands are stored. Each mu'ltiplicand consists of
two bytes, stored low byte first. The 4-byte product is stored, low byte first,
over the multiplicands.

The SIGI{ED INTEGER IIULTIPLY command (code 3p or lE) is used to multiply
two signed Z-byte integers. Address B must already be set to the Apple memory

address where the two multiplicands ane stored. Each multiplicand consists of
two bytes, stored low byte finst, in two's complement form. The 4-byte two's
complement product is stored, 1ow byte first, over the multiplicands.

The UNSIGNED INTEGER DMDE command (code 31 or lF) is used to divjde a 4-
byte unsigned'integer by a 2-byte unsigned integen. Address B must already be

set to the Apple memory address where the dividend and divisor are stored. The

div'idend is stored first. The 2-byte quotient will be stored over the f it'st two
bytes of the dividend, and the 2-byte remainder will be stored over the last two
bytes of the dividend. The divisor is left unmodified. All numbens are stored
low byte first. If an overflow occurs, the quotient will be 8999 hex and the
remainder is undeterm'ined.

The SIGNED INTEGER DMDE command (code 32 or 29 hex) is used to divide a

4-byte signed integer by a Z-byte signed integer. Address B must already be set
to the Apple memory addness where the dividend and divisor are stored. The

djvjdend is stored first. The Z-byte quotient will be stored oven the first two
bytes of the div'idend, and the Z-byte remainder will be stored over the last two
bytes of the djvidend. The djvisor is left unmodjfjed. All numbers are two's
complement and stored low byte first. If an overflow occurs, the quotient will
be 8999 hex and the remainder is undetermined.

FI.OATING.POINT MATH COMMANDS
All floating-point numbers are 5 bytes long. The first 4 bytes conta'in the

mantissa in two's complement format, 1ow byte first. The binary point precedes

the most s'ignificant mantjssa bit (b'it 7 of the most significant mant'issa byte is
the mantissa sign, b'it 6 is the most significant bit). The fifth byte is the base
2 exponent in two's comp'lement with the sign bit compl emented. Zero is
represented by all 5 bytes being zero. All non-zero numbens must be normalized
(the sign bit of the mantissa must be the complement of the most significant bit
of the mantissa).

All floating-point operat'ions work on a "stack" basis. The argument(s) are
"popped" from a stack in the Apple's memory, and the result is "pushed" onto the
stack. The B address is always the address of the first byte (lowest mantissa
byte) of the top item in the stack. (Thus, the B address must always be properly
set before using any of the floatjng-point operations.) The stack expands toward
lower-numbered memory addresses.

4-5 PROM Routines Pnocessor Card

The PUSH command (code 33 or 21 hex) 'is used to push a floating-point
number onto the stsck. It decnements the B address by 5. The App'le program

must keep its own copy of the B address so the floating-point number can be

written into the new top-of-stack locdtion reflected by the new B address value.
The POP command (code 34 or 22 hex) is used to pop a floating-point number

off the stack. It increments the B address by 5.

The FLOAT command (code 35 or 23 hex) is used to convert an integer into a

floating point number. The top-of-stack must be a 4-byte signed two's complement

integer stored low byte first'in the mantissa bytes, and the byte which is
norma'lly the exponent must be 159 (9F hex). The FLOAT command consists on'ly of
the normal'ize function.

The FIX command (code 36 or 24 hex) computes the greatest integer function
for the top-of-stack. The result'is not normal'ized, and the exponent is always
159; thus the mantissa bytes represent a two's complement 4-byte integer.

The following commands perfonm the indicated function, taking the required
argument(s) off the stack, and pushing the result on the stack. Error conditions
are not reponted. 0verflows are returned as (2n32-I)*2^L?7 or -(2nl59), and

unde.nflows are returned as p. "T0S" is top-of-stack numher, and "N0S" is next-
to-top-of-stack numbe r.

DECIMAL CODE HEX CODE FUNCTION

37

38

39

49

41

42

43

44

45

46

47

25

26

27

28

29

2A

28

2C

2D

2E

2F

195=11Q9+T0S

T0S=N0S-T0S

T0S=N0S*T0S

195=11Q9/T0S

T0S=-T0S

T0S=L0G T0S

T0S=2nT0S

T0S=N0SnT0S

T0S=SIN T0S

T0S=C0S T0S

T0S=ATN T0S

1 og base
I og base

I og base
pi

(base 2)

(radi ans)
(radi ans)
(radi ans)

he1 pful :The following constants may be

HIGH EXP VALUEL0w

95

FC

4?

51

ID
pB

4D

ED

55

B9

rp
87

81

89

7F

82

5C

58

4D

64

2ofe
eof2
L9ofZ

Processor Card PROM Routines 4-6

DIRECT CALLS IN 8088
The float'ing-point noutines can be called d'irectly from 8988 programs.

[8p88 machine language programming'is not described in this manual. The Intel
"iAPX 88 Book", available from Intel Corporat'ion (3p65 Bowers Avenue; Santa

Clara, CA 95051; Attn.: Literature Department) describes the 8p88 processor. This
book js also ava'ilable from ALF, order number LL-2-2.f Intra-segment calls must

be used. (This can be accomplished by setting the code segment to FF99 hex and

locating your program in the on-board RAM.) The arguments shown as NOS and T0S

(above) must be placed in 8p88 negisters. DI is the two least significant bytes

of the mantissa of T0S, BP'is the two most s'ignificant mant'issa bytes, and DL is
the exponent. For NOS, these registers are SI, BX, and CL. The addresses are as

fol I ows:

FLOAT PBFA

FIX PB97

ADD PBB4

SUBTRACT PBB1

MULTIPLY PC36
DIVIDE PCTF

NEGATE PC25

LOGARITHM PD3B

ANTr-LOG pDs4

EXPONENTIATION 9082
SINE PDFC

cosrNE pDFl

ARCTANGENT 9E4E

..AVAILABLE'' COMMAND CODES
The available command codes (48-247 or 39-F7) can be irsed to call 8p88

subrout'ines. Codes must be used from 48 up. W'ith data segment set to PPPP,
location 2P (L4 hex) must be set to the first unused command code (this is
normally set to 48, of counse). Locations 2I-24 (15-18 hex) must be set to the 4-
byte memory reference (Dword) of the user-provided command address table
(containing the 4-byte memory references (Dwords) of each command, stanting with
code 48). These 5 bytes can be set using the MOVE DATA command. Your command

will be called with an inter-segment call. AL will be the command code used.
Locat'ions 3P-44 (1E-2C) are the parameters sent to ports 1-15. Your command must
return wjth an inter-segment return, and all registers may be changed except SP

and SS. RAM locations 9-511 (p-tff; must not be changed (except 2p-24,14-18
hex). Current stack contents, beg'inn'ing at 2p47 (7FF) and going to SP must not be

chansed (SS is p99il.

4-7 PROM Routines Processor Cand

THE APPLE DISK II
Apple's "Disk l[" drive controllen is designed to functjon only when DMA is

not being used. Logically, it should activate the DMA OUT line during read or
write operations to assure pnoper operation; unfortunately it doesn't use DMA OUT

and the card is normally located in a low-priority slot (the highest priority slot
would have to be used to prevent conflicting DMA usage). Since the drive
controllen card does not indicate that DMA cannot be used, the Processor Card

will use DMA regardless of the disk controller's needs.
Th'is means that care must be ta'ken to avoid hav'ing the Processor Card use

DMA while the Apple contnoller is writing a disk. The sector written would be

unreadable. If large numbens of DMA transfers are done, the entire track can be

rendered unneadable. Less seriously, Processor Card DMA operations will cause

errors during disk read operat'ions (but'in this case the disk itself is not
changed). For proper operation, it is necessary to add a DMA OUT line to the
djsk control'ler card and place it in a lower-numbered slot than the Processor
Card.

Since changing the disk controllelis probably undesi rable, normally the
Processor Card is programmed'in such a way that it does not read or write the
Apple's memory (which would requi re a DMA operat"ion) while the d'isk is being
read or wnitten. FTL and MET are wnitten to avoid DMA/disk controller conflicts.

Problems occur mainly w'ith Processor Card commands that take a long time
to execute, as the Apille may go on to do a d'isk operation while the Processor
Card is still executing the command. A very large block move command, for
example, might take seconds to execute. If the Apple's memony js involved, the
d'isk should not be used during command execution.

The on-board PROM routines ane written so the most significant bit read
from port 0 is I when the card js idle (and thus the d'isk can be used). Avoid
using.Apple's disk controller (and any similar" controller) when this bit is g.

n

Ic
HARDWARE

5-1 Hardware Processor Card

MEMORY ALLOCATION
FUNCT I ON

On-board RAM.

Optional on-board RAM.

Reserved.
Apple memory.

Expansi on port.
Reserved.
0n-boand PROM.

ADDRESS

pppqp-9p7FF

9989p-ptFFF
p2pp9-9FrFF

Lp99p-LFFFF

2999p-2FFFF
39pp9-FEFFF

FFqPP-FFFTF

I/O ALLOCATION
ADDRESS FUNCTION

PP (write, with any data) Clear busy f'lag,
PP (read) Data from Apple I/0 interface.
pL (read) tlO intenface status.
92-7F Reserved.
8P-FF Expansion port.

I/O INTERFACE STATUS
Most significant bit is I when data is present (to be read from I/0 address

PP). Four least s'ignificant bits are the address the data was written to by the
Apple. See the PROM Routines section for a description of Apple I/0 from the
Apple s'ide.

EXPANSION PORT
PIN # NAME DESCRIPTION

Address line 1. Dnives 16 LS loads.
Address l'ine 9. Dri ves 16 LS I oads.
Address Iine 5. Drives 16 LS]oads.
Address line 4. Drives 16 LS loads.

Addness 'l 'i ne 6. Dni ves 16 LS I oads.
Addness line 2. Dnives 16 LS loads.
Address line 7. Drives 16 LS loads.
Address line 3. Drives 16 LS loads.

DMAE DMA cycle enable. 8 LS loads.
EXTA Expans'ion port memory enable. Drives 29 LS loads.
TRFE DMA transfer enable. Drives 16 LS loads.
DP Data line 0. 3 LS loads, drives 2.

1A1
2A9
3A5
4A4

5

6

7

8

9

r9
tl
T2

A6

A2

A7

A3

Processor Card Hardwane 5-2

13 ALE Addness latch enable. Drives 4 LS loads.
L4 D1 Data I 'i ne 1. 3 LS I oads, dni ves 2.
15 Dm' Data enable. Dnives 3 LS loads.
16 D2 Data line 2. 3 LS loads, drives 2.

17 DT/R Data transmjt/recejve. Drives 2 LS loads.
18 D3 Data line 3. 3 LS loads, drives 2.
19 I0/M Input-output/memory. Drives 3 LS loads.
29 D4 Data line 4. 3 LS loads, drives 2.

2l ilR Write. Drives 3 LS loads.
22 D5 Data line 5. 3 LS loads, drives 2.
23 GND Si gnal ground.
24 D6 Data 1ine 6. 3 LS 1oads, drives 2.

25 m Read. Drives 3 LS loads.
26 Dl Data line 7. 3 LS loads, drives 2.
27 GND Signal ground.
28 A8 Address line 8. Drives 2 LS loads.

29 GND Signal ground.
39 A9 Address ljne 9. Drjves 2 LS loads.
31 RESET Reset. Drives 10 LS loads.
32 AIp Address f ine 10. Drives 2 LS loads.

33 CLK Clock. Drives 18 LS loads.
34 A11 Addness line 11. Drives 2 LS loads.
35 A15 Address line 15. Drives 2 LS loads.
36 AL2 Address]ine 12. Dnives 2 LS]oads.

37 XRDY Expansion port neady. 8 LS loads.
38 A13 Address l'ine 13. Dni ves 2 LS I oads.
39 PCLK Periphenal clock. Drives 12 LS loads.
49 A14 Address line 14. Drives 2 LS loads.

The f ol l owi ng I 'i nes are not nonmal 8p88 1 i nes:
DI{AE: when held Iow through the expansion port, it causes the Processor

Card to generate an Apple DMA cyc1e. During a DMA write, the data to be
written must be enabled djrectly to the Apple bus data lines. TRFE jndicates
when data must be enabled on the Apple bus (or can be read from the Apple
bus).

EXTA: goes 1ow when any locat'ion from ZPPLU-ZFFFF is accessed.
TRFE: goes low when the Apple bus is'in DMA mode (whether requested with

5-3 Hardware Processor Card

DMAE or through normal Processor Card operations).
The ribbon cable mating connector for the expansion port is a 3M

Scotchflex plug connector, 3M part number 3324-999L.

PROM SIZE SELECTION
The 2K/4K PR0M jumper is used to select a 2K (27L6) or 4K (?73?) PROM in

socket position "d". When a wine is connected from the pad with an arrow to
the pad marked u2", a 2K PR0M is selected. When a w'ire is connected from the
pad with an arrow to the pad fiarked rr4rr, a 4K PROM is selected. 359 ns PROMS

must be used. See the schematic for proper address and data line mapping.

ON.BOARD EXPANSION
The on-board RAM can be expanded from 2K to 8K jn 2K'increments simply by

inserting additjonal memory chips. To expand the memory from 2K to 4K, a chip
is plugged into socket position "cl". To expand to 6K, a'lso insert a chip in
position "c2". For 8K, also use position "c3". The Tosh'iba TMM2016P memory

chip should be used. (0ther 2K by 8 RAM chips with 15p ns access times may be

compatible.) Extreme care must be used to protect the memory chip from static
electricity once 'it is nemoved from its protective packaging. Insert or
remove memory chips only when the card js not plugged into the App1e. Care
must be taken that the pin f indicator is to the top of the circuit card (tne
same as the factory-installed chip).

DMA TECHNICAL DETAILS
The Processor Card is not necessarily compatible with other products that

use DMA because Apple has not selected a standard DMA procedure. The rules
for compatibjlity with the system used in the Processor Card are as follows:

1. A card must not change its DMA OUT line while Q3 is low and phase 0
is high. (A flip-flop clocked by a negative transition of Q3 can be used to
generate DMA OUT.)

2. A card must pull the DMA line low only when phase 0 goes low and only
if its DMA IN line is high at that time.

3. A card must stop pulling the DMA line low at the next negative
transition of phase I if its DMA IN line is low at that time.

4. A card must have its DMA OUT line low prior to pulling the DMA line
low. DMA OUT must stay low while DMA is pulled low.

The AD8088 will hold DMA low for only one cycle of phase p. However, it
does not return DMA OUT to high until Q3 goes low just before the negative
transition of phase p in the cycle following the DMA cycle. This allows the
Apple to run for one cycle following any DMA access (or group of accesses from
multiple cards), thus preventing loss of register contents.

Ha rdwa re 5-4Processor Card

cf)"t\
co

5(J
ar,+cf)+@Nr\q- C\t cn

@ +JC)
t-,++l\ <f,

c\'l
tJ,, <)

U1
+sf+t\
C\J

L (J)
lr1sf+N+

C\Jco (tc)
@v1ojo cf) +Ol\r\

coo-(J
ar-,r+
t\

sflr)+r\
c\l co

c(J N(
U1 J++
l\ l\

<f r\
t\ co

E u1 >tnJJ<+ <t
f\ l\

Olcn+
F-{ O

-v../, x c/,
JJ<t+

t\

C\T:o cf)
N
c\l

(o
r-{
O

ON'
(.) ==F

(o
r-{

F{ (\l
(J=

=F
r.o
r-lo

N| C\ju=
=F
(O
r{
O

CD NI(J=

=F

oc
.9
o
occ
oo
Gc
o
E

o:to
c
.9
atco
CLxo
o
coooo

0

.9

ffg
E8
.Eg'o ll
EOI -o.too<u!

It

++Ntc\J
N1\COl{a u1 -c, v1 ,.-r.t1

=
tt1

JJJJ+stsfsf
l\ F\ t\

OsfOr\
OC'{N

.6 at, ql(/, 'r a4) at'l
JJJJ
sf <+ <f sf
l\ t\ t\ t\

FE=
h*rrl. ' I

l::l I lr - I

[jIE
F(\lE
HEN
Hi EE

EEE
rETE
EETT

5-5 Handware Processon Card

o
o
Jo
o(t

=E
o
ttcooxo
o

t6tro@gr@qNoo999oa9 ruElHEs

lo\t(ilOlFc|O)@EEKEEE<<., '==EHrE

Ha rdwa re 5-6Processor Card

o
o
.E

Enr

lHr,

lHr,
{Hr,

Jr'

5-7 Hardwane P rocessor Card

Processon Card H a rdwa re

INDEX

8088 conventions: 4-I MET data, neadjng d'irectly: 3-7
8p88 direct calls: 4-6 MET jntroduct'ion: 3-1

MET, pick'ing a resolution: 3-1 to 3-2
Apple IIe: I-2,2-2 MET, restarting: 3-8
Apple Disk l[: 4-7 MET, setting up: 3-1

MET, setting up yourself: 3-7 to 3-8
Busy flag: 4-I, 4-3, 4-7 MET timing: 3-2 to 3-3

MET READ: 3-3 to 3-7
Constants: 4-5 MET READ buffer variable: 3-7

MET READ, changing parameters: 3-6 to 3-7
Disk software: L-Z MET READ commands: 3-4
DMA: 5-3 MET READ lines variable: 3-7
DOS 3.2: I-2, 3-4 MET READ plot mode: 3-6
DOS 3.3: I-2, 2-L to 2-2, 3-4 MET READ view mode: 3-4 to 3-6

Expansion port: 5-1 to 5-3 Parameten ports: 4-I
Photo: 5-8

FTL.B: 2-2 to 2-3 PROM commands: 4-1 to 4-5
FTL, auto slot: 2-2 PR0M commands, "available": 4-6
FTL jntroduct'ion: 2-L PROM commands, integer math: 4-4
FTL, is it 'in memory?: 2-2 PROM commands, floating point: 4-4 lo 4-5
FTL, losing: 2-I to 2-2 PROM commands, miscellaneous: 4-2
FTL, setting up yourself: 2-2 to 2-3 PROM routines 'introductjon: 4-L
FTL stays in memony: 2-L PR0M size selection: 5-3
FTL, using: 2-L Protected DOS 3.3 disks: 2-I to 2-2

I/0 allocation: 5-1 Rad'io-TV interference: L-2
I/0 'interface status: 5-1 RAM card: I-2, 2-I
I/0 ports: 4-1, 4-3, 5-1 RAM expansion: 5-3
iAPX 88 book: 4-6 Random: 4-2, 4-3
Installing the card: 1-1 Repair illustration: 5-7
Integer BASIC: 2-I to 2-2

Schematic: 5-4 to 5-6
Language card: L-2,2-L Slot number: 2-I, 2-2, 3-2, 3-3, 3-4, 3-7,

4-L, 4-3
MET.B: 3-7 to 3-8
Memory al'location: 5-1 Tips: 1-1
Memory reference, 4-byte: 4-Z Typing "FP": I-2
MET and FTL: 3-1, 3-3
MET buffer variable: 3-7 Using two cards: 1-3
MET, changing parameters: 3-6 to 3-7

