AD8088
PROCESSOR
CARD

ALF

The

Processor Card
Owner's Manual

Complete Instructions
1057
ADB8088 Processor Card
Formulianclllic:;gnt;efer Link
MultipleaE\;:nt Timer

Copyright © 1982
ALF Products Inc.
1315F Nelson Street
Denver, CO 80215
U.S.A.

Part Number 11-1-7B

The information in this manual was believed to be accurate at the time of publication. Although this manual has
been carefully checked for accuracy by our inebriated technical staff, we assume no responsibility for errors or
omissions. ALF reserves the right to make changes in the product and/or specifications without notice.

AD8088 PROCESSOR CARD
FULL 1 YEAR WARRANTY

ALF Products Inc. warrants that computer programs will function as described in their associated owner’s
manuals, and that all other items will be free of defects in material and workmanship. ALF will correct any fault in a
computer program (or its manual, or both) or repair or replace (at ALF’s choice) any defective item free of charge for
one year from the date of sale by ALF.

To obtain warranty service, you must contact ALF at 1315F Nelson Street, Denver, Colorado 80215 or (303)
234-0871 for a service address. You must send the complete product, proof of purchase date, and a detailed
description of the difficulty to the service address. You pay for shipment to ALF, ALF pays for shipment back.

Any alteration of the product serial number voids this warranty. This warranty covers only ALF’s products, so
where local laws permit ALF will not be liable for consequential damages.

Ask your state government for details on their ‘‘implied warranty’” which also covers this product.

The following statements, which shed no new meaning on thls warranty, are requned by Federal Trade Commission regulations and are meant to S|mpI|fy warranty language: “Some
states do not allow the exclusion or limitation of incid I or so the above limitation or exclusion may not apply to you.” and “This warranty gives you
speclfic legal rights, and you may also have other rights which vnry from state to state.”

CONGRATULATIONS!

Your new AD8088 Processor Card is designed to give you faultless performance for years to come. Using the
Processor Card with programs like FTL is so easy, you won’t need to pay any attention to the card itself. But there
are a few features we think you might be interested in knowing. The Processor Card is constructed from top-quality
components, carefully selected for optimum performance. To make the card run cooler, several special low-power
circuits are used. All integrated circuits are installed in sockets for easy replacement should they ever fail.

The unique design of the Processor Card, made possible by ALF’s years of experience in designing Apple-
compatible products, includes a careful selection of functions. Each function is included for its usefulness to the
user, not for how it will sound in an advertisement. We believe your Processor Card represents the most versatile
and reliable design at a reasonable price. Additional functions can be added by means of designed-in expansion
capability.

Your choice of the ALF Processor Card shows that you appreciate the same high standard of quality and crafts-
manship that we do. ALF’s products are chosen by thoughtful and intelligent computer users around the world. We
hope you enjoy using your card as much as we’ve enjoyed creating it for you.

Hardware Design: John Ridges.

Software Design: John Ridges, Philip Tubb, Steve Wells.
Manual: Philip Tubb.

Graphics: Rick Harman.

Photo: Chuck Renstrom.

“Apple' is a trademark of Apple Computer Inc.

CONTENTS

1. INSTALLATION

S G O VI (S o
do Ro 1o R R &

]

RS
N =

N N
N N

Installing the card.

Tips.

Disk software.

Typing “FP".

The RAM card.

Radio-TV interference.
Using two or more cards.

TL

Introduction.

Using FTL.

FTL stays in memory.
Is FTL in memory?
Auto slot.

Setting up FTL yourself.

MET

3 1
3-1
3-2
3-3

3-6
3-7
3-7

Introduction.

Setting up MET.

Picking a resolution.
Timing.

The MET READ program.
3-4 Commands.

3-4 View mode.

3-6 Plot.-mode.
Changing parameters.
Reading data directly.
Setting up MET yourself.

PROM ROUTINES

42
4-3
4-4
4-4
4-6
4-6
4-7

Introduction.

Miscellaneous commands.

The busy flag (and random).
Integer math commands.
Floating-point math commands.
Direct calls in 8088.
“Available’’ command codes.
The Apple Disk II.

HARDWARE

5 1
5-1
5-1
5-3
5-3
5-3
5-4
5-7
5-8

Memory allocation.

I/0O allocation.

I/0 interface status.
Expansion port.

PROM size selection.
On-board RAM expansion.
DMA technical details.
Schematic.

Repair illustration.

Photo.

INDEX

1
INSTALLATION

1-1 Installation Processor Card

THIS MANUAL DOES NOT COVER USE OF THE APPLE II COMPUTER. READ THE MANUALS
SUPPLIED WITH YOUR APPLE, AND FAMILIARIZE YOURSELF WITH ITS USE, BEFORE
CONTINUING.

INSTALLING THE CARD

Installation of your Processor Card is easy. Just follow these instructions:

1. Turn the Apple off and remove the top cover (see your Apple manual for
details).

2. All Apple-compatible circuit cards are sensitive to static electricity. Care
should be taken to protect cards from excessive static. It is best to carry
the card in one hand, and touch objects only with the other hand (thus
avoiding discharge through the card). After opening the Apple, you should
eliminate any static charge you may have accumulated (by walking on carpets,
for example) by touching the metal power supply case in the left side of the
Apple.

3. Select which peripheral slot you wish to use. The slots are numbered from f
(Tleft) to 7 (right). Any of the eight slots may be used. You may wish to make
a note of which slot you've selected for future reference.

4. Plug the Processor Card into the selected slot. Make sure the card plugs in
completely, but avoid using enough pressure to bend the Apple's main board.
The main Apple board can be damaged by excessive bending.

5. Replace the top cover (see your Apple manual for details). Installation is now
complete, and you can switch the Apple on if you desire.

TIPS

- Always turn the Apple off before inserting or removing any circuit card.
Considerable damage can occur to the card and your computer otherwise.

- Some of the parts used on the Processor Card are particularly static sensitive
and may be protected by other parts on the card. Therefore, no part should be
removed from the card unless special anti-static precautions are carefully
followed. Leave repairs to professionals.

- Avoid dropping the Processor Card onto a hard surface or severely jolting it.
Normal handling will not harm the card, but a jolt can chip the crystal
(suspended inside the small metal can).

Processor Card Installation 1-2

DISK SOFTWARE

Software for the Processor Card is supplied on a l6-sector DOS 3.3 disk.
You may wish to make a backup copy before using the software (Federal copyright
law requires that you put our copyright notice on the backup copy). Programs on
the disk which are not described in this manual are for use with accessories
(such as the AD128K Memory Card). These programs are described in the
accessory's manual.

If you need a DOS 3.2.1 version of this software, contact ALF.

TYPING “FP”

Many of the programs supplied with the Processor Card are a combination of
BASIC and machine language. These programs will work properly under normal
circumstances, but will not work if run after a program which modifies the
Applesoft program pointers. The command FP will reset the appropriate pointers.
If you're not sure if the programs you've run recently change the program
pointers (or if you stop a program with control-C or reset), type FP before
running (or loading) any of the Applesoft programs supplied.

THE RAM CARD

FTL requires a Language Card or any of the equivalent 16K RAM cards (or
larger RAM cards that simulate a Language Card). This card will be referred to
simply as "the RAM card" in this manual. Note that the Apple Ile has a built-in
Language Card equivalent.

RADIO-TV INTERFERENCE

Due to the high speeds at which the circuit operates, it naturally generates
a small amount of radio frequency energy. Shielding in the computer's case is
designed to prevent this energy from escaping. Although the Processor Card and
the Apple computer have been carefully designed to reduce emission, radio
interference might possibly occur in unusual situations. You can determine if
the computer is the source of interference by turning it on and off and
observing whether the interference stops and starts. Reorienting television or
radio antennas, or moving the radio or computer to a different location or
electrical outlet might solve any interference problem. A booklet "How to
Identify and Resolve Radio-TV Interference Problems", number PP4-pPP-pP345-4, is
available from the U.S. Government Printing Office, Washington, DC 2p4p2. If you
think this rambling paragraph is silly but required by government regulations,
you're right.

1-3 Installation Processor Card

USING TWO OR MORE CARDS

When two or more AD8P88 Processor Cards are used in one Apple, the DMA
daisy chain must run through each card. This allows the cards to access the
Apple's memory one at a time in a controlled fashion. The daisy chain is
“broken" by an empty slot or a card which doesn't connect DMA IN to DMA OUT (the
edge contacts on each side of the card, second set from the back).

If all cards in your Apple have the DMA Tines properly connected, just make
sure there are no empty slots between Processor Cards (that is, all empty slots
are at the far left or right). If you suspect the DMA lines may not be properly
connected on some of your peripheral cards, just be sure to plug all Processor
Cards in adjacent slots.

FTL

2-1

FTL Processor Card

INTRODUCTION

FTL, the Formula Transfer Link, is a program that routes Applesoft math
functions to the Processor Card for computation. Since the 8p88 processor is
faster than the Apple's 6502 processor, the math functions are computed more
quickly. FTL actually consists of three programs. One program, located in the
RAM on the card, is written in 8088 machine language. It performs some of the
mathematical computations, and calls routines in the card's ROM to perform the
other computations. Another "program", located inside the Applesoft language
itself, is written in 6502 machine language. It consists of small "patches" at
the beginning of each math routine in Applesoft, and each patch routes the
particular math function to the Processor Card. The third program is the FTL
program supplied on disk with the card. It loads the other two programs into
their appropriate memory locations so they can be used.

USING FTL

If you've already booted up and now wish to use FTL, you simply insert the
supplied disk (see the instructions in the Installation section) and type RUN FTL.
The FTL program will ask which slot your AD8P88 Processor Card is in. Type the
slot number and press return. All necessary set-up will then be performed by
the program.

If your computer has Integer BASIC in ROM, you must already have Applesoft
BASIC in your RAM card (or a LANGUAGE NOT AVAILABLE message will be printed).
Instructions for loading Applesoft into your RAM card are given in the DOS 3.3
manual. The FTL program will unprotect the RAM card, make the necessary
changes to the Applesoft language, and reprotect the RAM card.

If your computer has Applesoft BASIC in ROM, the FTL program will unprotect
the RAM card, copy ROM Applesoft into the RAM, make the necessary changes to the
Applesoft language, and protect the RAM card.

FTL STAYS IN MEMORY

Once you've run FTL, it will stay in memory even as you run various
Applesoft programs. Thus, you can run as many Applesoft programs as you like,
and they will all run faster. The following things will cause FTL to be lost: (1)
turning off the Apple, (2) booting up with DOS 3.3, (3) loading or running an
Integer BASIC program or typing INT, if your computer has Applesoft in ROM, (4)
running any program that changes the contents of the RAM card (or which bank is
enabled), or (5) running a different Processor Card program (such as MET). If
you do any of these things, you will need to run the FTL program again next time
you wish to use it.

Booting up a DOS 3.3 disk causes FTL to be lost because the DOS 3.3 boot-up
procedure erases the RAM card. DOS 3.2 doesn't erase it. There's no apparent
reason for DOS 3.3 to do this, but fortunately the erase routine is easily
removed. To initialize a new DOS 3.3 disk that doesn't erase the RAM card,

Processor Card FTL 2-2

simply type POKE -16429,173 (on a 48K Apple) before using the INIT command. If
you have Applesoft in ROM, you must also do POKE -16432,0 and POKE -16435,p
before INIT to keep DOS 3.3 from switching to ROM Applesoft. Copy-protected DOS
3.3 disks are a problem since you can't remove the erase routine. Unless the
software supplier has already removed the erase routine, you won't be able to
use FTL with programs on a copy-protected DOS 3.3 disk.

If you type INT or try to load or run an Integer BASIC program on an Apple
with Applesoft in ROM, FTL will be Tlost as just mentioned. (If your Apple has
Integer BASIC in ROM, you'll be able to switch between Integer BASIC and
Applesoft-with-FTL as usual.) On an Apple Ile, this also occurs every time RESET
is pressed. If this happens, you can recover FTL just by typing ?PEEK(-16256).
If you prefer, you can use PRINT PEEK(-16256) instead. Don't try this peek on a
computer with Integer BASIC in ROM (of course, there's no need to).

IS FTL IN MEMORY?

You can tell whether FTL is active or not by typing ?7A2 and pressing
return while in Applesoft (] prompt). (If you like, you can type PRINT 7A2
instead.) When 49.0PPPPP1 is printed, FTL is not in memory. When 49 1is printed,
FTL is active. The results are different because FTL uses different algorithms
than Applesoft does. The results will differ only very slightly.

AUTO SLOT

The FTL program can be set to use a particular slot when it is run rather
than ask you for the AD8P88 slot. This would be desirable if you're not going to
move the Processor Card from slot to slot frequently. As an example, let's
assume your Processor Card is in slot 3. To set FTL to use only slot 3 you
would type:

IFP

JLOAD FTL

JLIST 19

1p SLOT = 8 (the computer prints this line and the] prompts)
119 SLOT = 3

JSAVE FTL

Now when you run FTL it won't ask for the AD8P88 slot. To go back to normal
(with FTL asking for the slot number), put the SLOT = 3.back to SLOT = 8, using

the same procedure as above.

SETTING UP FTL YOURSELF

You can have your own program set up FTL automatically. First, poke the
slot number of the AD8P88 card times 16 into memory location 6. Next, BLOAD
FTL.B into memory and call it. For example, in an Applesoft program for a 48K

FTL Processor Card

Apple with the AD8P88 card in slot 3, you could use:

19 POKE 6,48 : PRINT CHR$(4);"BLOAD FTL.B,A3712p" : CALL 37129

In this example, your program must not use any string variables before the above
line is executed, because the FTL.B program is BLOADed into the string variable
area. The FTL.B program can be loaded into any memory area that doesn't
conflict with anything else and where 12pp bytes are available (just substitute
the appropriate address after the ",A" in the BLOAD and after the "CALL").

The FTL.B program can easily be moved to another disk. Load it into
memory by typing BLOAD FTL.B,A3712Q and then save it on the desired disk by
typing BSAVE FTL.B,A3712p,L12Pp (48K is required to load at this address).
Remember you must have a label that reads "FTL © 1982 by ALF" on any disk you
put the FTL.B program on. If you plan to sell your program and wish to put
FTL.B on the disks to be sold, contact ALF for a license agreement.

MET

MET Processor Card

INTRODUCTION

MET, the Multiple Event Timer, is a program that allows the Processor Card
to be used as a timer. MET is written entirely in 8p88 machine language. It
doesn't access the Apple's memory while it is set up for timing, and thus doesn't
affect execution speed of the Apple's processor. This allows it to be used to
measure the execution time of programs or routines being run by the Apple's
processor. 457 events can be stored with 2K of RAM on the Processor Card (1149
events with 4K, 1823 with 6K, and 2505 with 8K).

SETTING UP MET

The MET program can be set up simply by inserting the supplied disk (see
the instructions in the Installation section) and typing RUN MET. Note that MET
cannot be used while FTL is active (unless FTL is used on one Processor Card
and MET on another, with MET set up before FTL). The message "FTL IN USE.'
will be printed if this is attempted. Normally, the set-up program asks for the
AD8P88 slot and for the desired time resolution. The choices for time resolution
are:

NUMBER TO TYPE RESOLUTION MAXIMUM DURATION (per event)
[i] 50 microseconds 3.2768 seconds
1 1PP microseconds 6.5536 seconds
2 5PP microseconds 32.768 seconds
3 1 millisecond 65.536 seconds
4 5 milliseconds 327.68 seconds
5 19 milliseconds 655.36 seconds
6 50 milliseconds 3,276.8 seconds
7 199 milliseconds 6,553.6 seconds

PICKING A RESOLUTION

One microsecond is a millionth of a second. One millisecond is a thousandth
of a second. Let's consider the 1PP millisecond resolution setting. 1P
milliseconds is .1 seconds. If the interval being timed is any duration less than
.1l seconds, MET will store it as taking .l seconds. Any interval .1 to under .2
seconds 1in duration will be stored as .2 seconds, and so forth. Since MET uses
numbers from 1 to 65,536 to store the duration measurements, while in the 10§
millisecond resolution mode it can store durations from .1 (1 times .1) to 6,553.6
(65,536 times .l1) seconds. Longer durations will "wrap around", so a 6,553.7
second duration would be stored as .1 seconds, 6,553.8 would be stored as .2,
and so forth.

Generally, you'll want to pick the smallest resolution that won't wrap
around. For example, if you expect to time events that will take up to 1P
seconds, you'll want to use the 5pP microsecond resolution since it can time up

Processor Card MET

to 32 seconds. The 1PP microsecond resolution is too small since it can only
time up to 6 seconds. If resolution is critical, you can use the smallest
resolution even though it might wrap around. For example, if you're timing
something that takes about 5 seconds, you could use the 5p microsecond setting
and remember to add 3.2768 seconds to the result obtained.

It is important to avoid resolutions which are too large. Only one event
may occur in each resolution interval. For example, with 1PP millisecond
resolution, if two events are sent to the 8088 in the same 1PP millisecond
interval, only the Tast one will be recorded.

TIMING

After MET is set by typing RUN MET, you are ready to begin timing. Each
event is signaled to the 8P88 by writing a reference number to one of its
memory addresses. The memory address to use is SLOT*16-16255 where SLOT is
the slot number of the AD8P88 card (P-7). The first poke to that address begins
timing, and each subsequent poke causes MET to store the number poked and the
time since the previous poke. (The first number poked, which starts the timing,
is not stored.) For example, let's say we want to time how long the statement
A=7A2 takes to execute. We'll need the smallest resolution, so we RUN MET and
ask for resolution number P. If the AD8P88 is in slot 3, we need to poke at
3*16-16255, which is -16207. Now, type in this program:

FP (ready for a new program)
1p POKE -162p7,0 (start timing)

30 POKE -162p7,1 (stop timing)

RUN

Notice line 20 is skipped. This is where we will put the statement we want to
time, but first we need to know how much overhead there is. MET stored the
reference number 1 and the time it took between pokes when we ran the program.
It is now timing how long it will be until the next poke. We type:

20 A=7A2 (the statement we want to time)
RUN

The two pokes are still there, with Tine 2P between them. MET has now stored
how long it took us to type the line and type RUN, and this is stored with
reference number P. The time to run line 20, plus the overhead, is stored
with reference number 1. Let's also time A=7*7. We type:

20 A=7*7 (new statement to time)
RUN

3-3

MET Processor Card

Again, MET times how Tong it took to type the line and stores that with reference
number P. The timing for the new line 20 is stored with a 1 reference number.
Now we can type RUN MET READ to see the results. After asking for the AD8pP88
slot number, MET READ will read the data from the Processor Card, and then show
an = prompt. Type VIEW to see the data. The program shows:

VALUE -P5MS TOTAL TIME
p 1 159 159
1 P 36967 37126
2 1 1159 38276
3 P 41348 79624
4 1 236 79860

The lines with VALUE's of § represent typing time, so they'll vary quite a bit
from one try to another. The other times may vary slightly, and of course the
TOTAL TIMEs will change to match the times shown. Event #0 shows 159 times 5P
microseconds ("MS" means milliseconds, and .p5 millseconds equals 50
microseconds), or 7,950 microseconds. This is the amount of processing time
between the two pokes, mostly spent turning -16207 into binary. Note that the
actual time could have been as little as 7,90p microseconds, since MET rounds up
to the next 5P microsecond interval (when in 50 microsecond resolution). Also,
the crystal time base used has an accuracy of plus or minus P.01%, which in this
case would be plus or minus P.795 microseconds.

Event #2 shows 115f intervals and is the timing of the A=7A2 statement plus
the poke processing. Subtracting the 159 intervals of poke processing leaves 991
intervals (49,550 microseconds) of processing time in the A=7A2 statement.

Event #4 shows 236 intervals, which minus the 159 poke processing time is
77 intervals (3,850 microseconds) for the A=7*7 statement. As you can see, 7*7
is a much faster way to square 7 than 7A2 is. To give you an idea of how many
6502 machine instructions the Apple is running to make the computations, it has
an average speed of 1,020,500 cycles per second (.9799 microseconds per cycle).
The fastest instruction takes 2 cycles, and the slowest takes 7.

If you used one Processor Card for FTL and another for MET, you could see
that with FTL 7*7 takes 3,250 microseconds and 7A2 takes 3,60Q microseconds.
This is because the 8p88 is faster than the 6502, and because FTL uses a more
intelligent exponentiation algorithm than Applesoft.

THE MET READ PROGRAM

The MET READ program is a convenient way to quickly examine timing data
either in numeric or plotted form. The MET READ program also obtains the timing
data from the Processor Card automatically, and allows it to be saved to disk
and loaded from disk. The program is run simply by typing RUN MET READ (see

Processor Card MET

the Installation section for disk information). Once run, MET READ will ask for
the slot number of the AD8P88. Type the slot number, or type 8 if you do not
have the AD8088 installed at the moment. A message indicating whether or not
data was read from the Processor Card and whether or not data present in
memory seems to be in MET format will be displayed. Then an = prompt appears,
and the program is ready to accept commands. Generally, numbers may be given
in decimal or in hexadecimal. Hex numbers must be preceded by a dollar sign ($).

COMMANDS

The SAVE command saves the timing data currently in memory to disk as a
"B" file. It is used the same as the SAVE command in BASIC. Examples: SAVE
TEST FILE or SAVE TEST FILE,D2.

The LOAD command loads timing data previously saved with the SAVE command
(above) into memory. It is used the same as SAVE. Examples: LOAD TEST FILE or
LOAD TEST FILE,DZ2.

The CATALOG command is used to see a catalog of programs on disk. It is
the same as the CATALOG command in DOS 3.2 or DOS 3.3. Examples: CATALOG or
CATALOG,D2.

The DELETE command is used to delete a program from the disk. It is the
same as the DELETE command in DOS 3.2 or DOS 3.3. Examples: DELETE TEST FILE
or DELETE TEST FILE,D2.

The VIEW command is used to see the timing data in numeric form. It has
various commands which are described below.

The PLOT command is used to see the timing data in plotted form. It has
various commands which are described below.

The QUIT command is used to leave MET READ and go back to BASIC. To use
MET READ after typing QUIT, it must be loaded from disk again.

The HELP command Tists the available commands.

VIEW MODE

When in view mode, the top of the screen displays several lines of timing
data, and the bottom is used to type in commands. The heading at the top of the
screen could read:

VALUE .p5MS TOTAL TIME

In the # column the consecutive event number (starting with P) for each event is
shown. In the VALUE column is the reference value for each event. The next
column is the event duration, in whatever units are shown in the heading.
Finally, in the TOTAL TIME column the total of all event durations so far is
shown. The following commands are available from view mode:

The -> key is used to see one more event. The screen rolls up one line so
the new event can appear near the bottom of the screen.

The <- key is used to see one previous event. The screen rolls down one
line so the previous event can appear near the top of the screen.

MET Processor Card

Note that the -> and <- keys can be used to scroll the screen only when the
flashing cursor is not present. (When the cursor is present, these keys are used
as backspace and forward space as usual.) Pressing the return key will remove
the flashing cursor and allow the -> and <- keys to be used for scrolling.

The GO TO command is used to begin viewing with the desired event. The
consecutive event number to begin the display with must be specified. Example:
GO TO 25 (the display begins with event # 25, the 26th event).

The UNITS command is used to select what unit of time all durations will be
shown in. UNITS AUTO selects the resolution the MET program was set for when
the data was recorded. UNITS MS selects milliseconds. UNITS SEC selects
seconds. UNITS MIN selects minutes.

The EVENTS command is used to limit the display to a particular range of
consecutive event numbers. Also, TOTAL TIME will be computed starting with the
first event in the range selected. A dash is used to separate the first and last
event numbers to be displayed. This command also affects the DUMP and PRINTER
commands. Examples: EVENTS 5p-1Pp (show only events 5@ through 1P@, inclusive)
or EVENTS -1p9 (show events P through 1PP) or EVENTS - (show all events) or
EVENTS 5p- (show all events from # 50 on).

The VALUES command is used to limit the display to a particular range of
reference values. A dash is used to separate the lowest and highest reference
values to be used. Only events with reference values in the specified range will
be displayed. This command also affects the DUMP and PRINTER commands.
Examples: VALUES 50-1P9 (show only events with values from 5p to 1PP, inclusive),
VALUES -1PP (show only events with values P through 1Pp) or VALUES - (show all
events) or VALUES 5@- (show only events with values 5Q through 255).

The BASE command is used to select the display base for the VALUE column.
BASE DEC selects decimal, and BASE HEX selects hexadecimal. All hexadecimal
numbers are preceded by a $ when displayed.

Note that the UNITS, EVENTS, VALUES, and BASE commands will show their
current settings if the command is typed alone (just UNITS, EVENTS, VALUES, or
BASE and press return).

The DUMP command is used to create a text or "execute" file on disk
containing the reference values and durations of all events selected for display
by the EVENTS and VALUES commands. It is used the same as the SAVE command
(above.) The first line in the text file contains a number from P to 7 indicating
the resolution MET was set for when the data was recorded, a comma, and a
number indicating the number of events which follow. Each event line contains a
number from P to 255 indicating the reference value, a comma, a number from 1
to 65536 indicating the duration since the previous event (in time units as
specified by the resolution indication in the first text line), a comma, and a
number from 1 to 164167680 indicating the "total time" (in the same units as the
duration). The last line is -1,-1,-1 to indicate the end of the file. Command
examples: DUMP FINAL DATA or DUMP FINAL DATA,D2

Processor Card MET

The PRINTER command is used to print the events selected by the EVENTS and
VALUES commands to a PR#-compatible printer. The slot number of the printer
must be specified. Each page will begin with two blank lines, the heading,
another blank line, 6p lines of events (changeable as described below), and two
blank lines. Command example: PRINTER 1.

The EXIT command is used to exit view mode and return to the main
program. To exit to BASIC, type QUIT.

PLOT MODE

When in plot mode, the top part of the screen is in high-resolution graphics
mode showing a plot of the timing data; and the bottom part of the screen is
used for typing commands. The horizontal axis of the plot shows various time
durations, and the vertical axis shows the number of events with a given
duration. The lines below the graphics area indicate the scale of each axis and
the range of the horizontal axis. For example,

19 EVENTS/DIV 50 SEC/DIV

TIMES .p1-655.36

indicates the vertical axis has 1P events per division (each division is indicated
by a missing dot in the vertical axis), the horizontal axis has 50 seconds per
division (each division is indicated by a dot below the horizontal axis), and the
range of times shown is .pl seconds to 655.36 seconds. The same plot might be
shown as:

1P EVENTS/DIV 50pp (1PMS)/DIV

TIMES 1-65536

which means 1P events per division, 50pP times 1P milliseconds (50 seconds) per
division, and times from 1 times 1P milliseconds (.p1 seconds) to 65536 times 1§
milliseconds (655.36 seconds). Note that the display does not show an integral
number of divisions either vertically or horizontally. The following commands
are available from plot mode:

The UNITS, EVENTS, VALUES, EXIT, and QUIT commands are the same as in view
mode. Settings made while in view mode will carry over to plot mode and vice
versa.

The TIMES command selects a range of durations to be displayed. (The
current TIMES setting is always displayed on the next-to-top text line.) The
current UNITS command setting specifies what units the TIMES range should be
given in. Numbers can contain a decimal point, but may not be in hexadecimal.
Example commands while in UNITS SEC setting: TIMES 5p0-1Pp (shows durations from
50 seconds to 1PP seconds, inclusive) or TIMES -1PP (shows durations up to and
including 1PP seconds) or TIMES - (shows all durations) or TIMES 5p- (shows
durations from 5@ seconds up).

CHANGING PARAMETERS

Both the MET program and the MET READ program have parameters in line 1§

MET Processor Card

that can be changed if desired. This is done by loading the program, listing
line 1P, retyping the Tline changing only the appropriate numbers, and saving the
program. Neither program should be changed after it has been run. The length
of line 1P must remain the same. If necessary, leading p's should be added to
numbers. For example, line 1P in MET reads:

19 SLOT = 8 : BUFFER = 26624 : TIME = 8

To change buffer to 8192, type:

19 SLOT = 8 : BUFFER = P8192 : TIME = 8

The SLOT value is the slot number the Processor Card is plugged into, or 8 to
have the program ask for the slot number. The BUFFER value is the memory
address where the 8088 will write the timing data when commanded to do so, or
(for MET READ) the address where the timing data is expected to be. (BUFFER must
the set the same in MET and MET READ if MET READ will be used to read the data.
26624 is virtually the only address MET READ can use.) If BUFFER is set to P,
the program will ask for the buffer address. The TIME value (not present in MET
READ) is the desired resolution (P to 7) or 8 to have the program ask for the
resolution. In MET READ, there is also a line 20 which can be changed in a
similar fashion. It is 2p LINES = 66 and it indicates the desired number of
lines per page when the PRINTER command is used. Again, care must be taken that
the length of the Tine is not changed.

READING DATA DIRECTLY

If you do not wish to use MET READ to read the timing data, you can read it
yourself. When 248 (hex F8) is poked at location SLOT*16-16256 (where SLOT is
the slot number the Processor Card is plugged into), the 80p88 will write the
timing data into memory, starting at the address indicated by BUFFER in the MET
program. (Sending a P to this address will cause the data to be discarded and
MET to be stopped.) The first byte of data will be the resolution selected plus
48. The next two bytes will be the length of the data (this number divided by 3
minus 1 indicates the number of events which follow). All following bytes are
the events, consisting of one byte indicating the reference value and two bytes
indicating the time since the previous event (or, for the first event, the time
since the "start" command). A 65536 duration is stored as p. The time is given
in units as specified by the selected resolution. All two byte numbers appear
low byte first. There is no end marker in the data.

SETTING UP MET YOURSELF

You can have your own Applesoft program set up MET automatically. First,
poke the slot number of the AD8P88 card times 16 into memory location 6. Poke
the desired resolution (p to 7) into location 7. Poke the buffer address (where
the timing data will eventually be stored) into locations 8 (low byte) and 9 (high
byte), use 26624 if you will be reading the results with MET READ. Next BLOAD
MET.B into memory and call it. For example, in an Applesoft program for a 48K

Processor Card MET

Apple with the AD8p88 card in slot 3, you could use:

19 POKE 6,48 : POKE 7,0 : POKE 8,112 : POKE 9,1p2

2P PRINT CHR$(4);"BLOAD MET.B,A37888" : CALL 37888

In this example, your program must not use any string variables before the above
lines are executed, because the MET.B program is BLOADed into the string
variable area. The MET.B program can be loaded into any memory area that
doesn't conflict with anything else and where 500 bytes are available (just
substitute the appropriate address after the ",A" in the BLOAD and after the
"CALL").

The MET.B program can easily be moved to another disk. Load it into
memory by typing BLOAD MET.B,A37888 and then save it on the desired disk by
typing BSAVE MET.B,A37888,L5Pp0 (48K is required to load at this address).
Remember you must have a label that reads "MET © 1982 by ALF" on any disk you
put the MET.B program on. If you plan to sell your program and wish to put
MET.B on the disks to be sold, contact ALF for a license agreement.

If MET 1is loaded and timing is stopped (by sending a P to location SLOT*16-
16256 or by reading the timing data), it can be restarted with any desired
resolution by poking the resolution number plus 48 to location SLOT*16-16256.
This will work only if MET is still loaded in the 8p88's RAM (programs like FTL
remove MET).

4
PROM ROUTINES

4-1 PROM Routines Processor Card

INTRODUCTION

Communication with the Processor Card is done mainly through 16 I/0 ports,
at Apple memory addresses CPxp (where x is 8 for slot P to F for slot 7, and p
is the port number, § to F). In decimal, SLOT*16-16256+P (where SLOT is the slot
number, ® to 7, and P is the port number, § to 15). Data can be written to any
of these ports. When port p is read, the most significant bit (bit 7) is P if the
ports should not be written to or 1 if the Processor Card is ready to receive
data. Bits 6 through P of the data read from port P are random. Ports 1 through
15 should not be read.

The following conventions of the PROM routines are recommended for all
8088 programs. (1) Port P is used as the command register. All other ports are
used to pass parameters. (2) Sending a P to port P causes any 8P88 program to
stop operation and jump to the main PROM idle Toop. (3) Whenever the most
significant bit of the data read from port P is 1 (i.e., the card is ready to
accept data), the 8p88 is not accessing the 6502's memory (and so speed critical
Apple routines can proceed).

The 1-9-1-1 PROM routines use the 15 parameter ports to set 15 stored
parameters. Commands sent to the command port can access parameters already
set via the 15 parameter ports. The ports are assigned as follows:

Port Function

P Commands.

1-11 Reserved for the 1p-5-8 Graphics Subsystem.
12 Address A (Tow byte).

13 Address A (high byte).

14 Address B (Tow byte).

15 Address B (high byte).

The commands are as follows:
Decimal Hex Function

] Ju]] Reset to main idle loop.

1-28 p1-1C Reserved for the 1p-5-8 Graphics Subsystem.
29-32 1D-2p 2-byte integer math functions.

33-47 21-2F 5-byte floating-point math functions.
48-247 3p-F7 (Available.)

248 F8 Reserved for MET.

249-25p F9-FA Reserved for special function.

251-255 FB-FF Miscellaneous.

Processor Card PROM Routines 4-2

MISCELLANEOUS COMMANDS

The SEQUENCE command (code 251 or FB) is used to have the Processor Card
read and execute a sequence of commands in the Apple's memory. Agdress B must
already be set to point to the command sequence. Each command in the sequence
must consist of two bytes. The first byte indicates which port number (p-15) the
second byte applies to. For example, the bytes PE 27 in a command sequence
would have the same effect as sending a 27 to port E (14). Another SEQUENCE
command in the command sequence causes any remaining commands in the sequence
to be ignored; processing continues at the address specified by the new SEQUENCE
command. A sequence is ended by placing a RESET command in the sequence (PP
).

The RANDOM command (code 252 or FC) is used to obtain a “random" number.
Address B must already be set to the Apple memory address where the 1 byte
result will be stored. All 8 bits in the stored result will be "random". The
formula used is NEW RND=(OLD RND * 2 + (BIT 2 XOR BIT 3P)) MOD 2147483648,
where BIT 2 and BIT 30 are bits 2 and 30 from OLD RND. This formula is run
continuously by the main idle loop. The least significant 8 bits of NEW RND are
returned by the RANDOM command.

The SET MEMORY command (code 253 or FD) is used to set a block of 8088 or
Apple memory to a selected value. Address B must already be set to the Apple
memory address where the following table is located. The first four bytes in
the table are a 4-byte memory reference indicating the start of the memory area
to set. The next two bytes are the Tength of the memory area to be set, low
byte first. The Tlast byte in the table is the value to be written into the block
of memory.

The MOVE DATA command (code 254 or FE) is used to move a block of data
from one place in memory to another. Address B must already be set to the Apple
memory address where the following table is located. The first four bytes in
the table are a 4-byte memory reference indicating the destination memory
address. The next four bytes are a 4-byte memory reference indicating the
source memory address. (Data is moved from the source area to the destination
area.) The source and destination areas must not overlap if the destination
address is greater than the source address. The final two bytes indicate the
number of bytes to move, Tow byte first.

The CALL command (code 255 or FF) is used to cause the 8p88 to call a
subroutine from the main idle loop. When the subroutine returns (using an inter-
segment return), the main idle Toop will continue. Address B must already be set
to the Apple memory address where a 4-byte memory reference (the address to
call) is stored.

The first two bytes of a 4-byte memory reference are the address of an
Apple memory location or the offset of an 8p88 memory location, low byte first.
The final two bytes are the 8p88 segment number, low byte first. Apple memory
is accessed with a segment number of 1PPP hex or 4p96 decimal.

4-3

PROM Routines Processor Card

THE BUSY FLAG (AND RANDOM)

Note that before a command is sent, the busy flag must be examined. A
typical assembly language routine to read a random number into location 15 might
be:

RANDOM LDX SLOT16 SLOT16 CONTAINS AD8p88 SLOT NUMBER * 16.

JSR BUSY WAIT UNTIL AD8P88 IS READY.

LDA #15 SEND LOW BYTE OF ADDRESS B.

STA $CPSE, X

JSR BUSY WAIT UNTIL AD8P88 IS READY.

LDA #p SEND HIGH BYTE OF ADDRESS B.

STA $CPSF, X

JSR BUSY WAIT UNTIL AD8P88 IS READY.

LDA #252 SEND RANDOM NUMBER COMMAND.

STA $CP8p, X

JSR BUSY WAIT UNTIL RESULT IS IN APPLE MEMORY.

LDA 15 PUT RANDOM NUMBER IN A.
RTS RETURN TO CALLING ROUTINE.
BUSY LDA $CP8P,X READ BUSY/READY STATUS.
BPL BUSY (AD8P88 IS BUSY, SO WAIT.)
RTS AD8P88 IS READY, SO RETURN.

Integer BASIC and Applesoft BASIC are so slow that it is generally not
necessary to check the busy flags when using the RANDOM command. (The RANDOM
command can be used while FTL is active, but not while timing with MET.) From
BASIC, POKE SLOT*16-16242,6 : POKE SLOT*16-16241,0 is used to set up address B
any time before random numbers will be needed. To obtain a random number, use
POKE SLOT*16-16256,252 : R=PEEK(6). Note that SLOT must be the AD8P88 slot
number (to 7) and R will be set to a random integer from P to 255. To get n
random integers with the smallest result being x, use INT(R/256*N)+X in Applesoft
BASIC or R*N/256+X in Integer BASIC. In Integer BASIC, n must be less than 128.
When x is P, this formula gives the same range as Integer BASIC's RND(N), except
Integer BASIC's random algorithm repeats much sooner than the AD8P88's algorithm
and so the AD8P88's numbers may appear more "random". In Applesoft BASIC, n
must be less than 257. POKE SLOT*16-16256,252 : R=PEEK(6) : POKE SLOT*16-
16256,252 : R=R+256*PEEK(6) can be used to get a random integer from P to 65535
and thus INT(R/65536*N)+X can be used for values of n up to 65536 or for more
even distribution for small values of n where 256/n is not an integer. Note that
the sequence of numbers from the AD8P88's random is not repeatable (especially
since new random numbers are continuously computed by the main idle loop),
whereas Applesoft only has repeatable sequences. The AD8P88's random can be a
significant advantage where repeatable (or predictable) numbers are not desired.

Processor Card PROM Routines 4-4

INTEGER MATH COMMANDS

The UNSIGNED INTEGER MULTIPLY command (code 29 or 1D) is used to multiply
two unsigned 2-byte integers. Address B must already be set to the Apple memory
address where the two multiplicands are stored. Each multiplicand consists of
two bytes, stored lTow byte first. The 4-byte product is stored, low byte first,
over the multiplicands.

The SIGNED INTEGER MULTIPLY command (code 30 or 1lE) is used to multiply
two signed 2-byte integers. Address B must already be set to the Apple memory
address where the two multiplicands are stored. Each multiplicand consists of
two bytes, stored low byte first, in two's complement form. The 4-byte two's
complement product is stored, Tow byte first, over the multiplicands.

The UNSIGNED INTEGER DIVIDE command (code 31 or 1F) is used to divide a 4-
byte unsigned integer by a 2-byte unsigned integer. Address B must already be
set to the Apple memory address where the dividend and divisor are stored. The
dividend is stored first. The 2-byte quotient will be stored over the first two
bytes of the dividend, and the 2-byte remainder will be stored over the last two
bytes of the dividend. The divisor is left unmodified. All numbers are stored
low byte first. If an overflow occurs, the quotient will be 8PpPP hex and the
remainder is undetermined.

The SIGNED INTEGER DIVIDE command (code 32 or 20 hex) is used to divide a
4-byte signed integer by a 2-byte signed integer. Address B must already be set
to the Apple memory address where the dividend and divisor are stored. The
dividend is stored first. The 2-byte quotient will be stored over the first two
bytes of the dividend, and the 2-byte remainder will be stored over the last two
bytes of the dividend. The divisor is left unmodified. All numbers are two's
complement and stored low byte first. If an overflow occurs, the quotient will
be 8pPP hex and the remainder is undetermined.

FLOATING-POINT MATH COMMANDS

A1l floating-point numbers are 5 bytes long. The first 4 bytes contain the
mantissa in two's complement format, low byte first. The binary point precedes
the most significant mantissa bit (bit 7 of the most significant mantissa byte is
the mantissa sign, bit 6 is the most significant bit). The fifth byte is the base
2 exponent in two's complement with the sign bit complemented. Zero is
represented by all 5 bytes being zero. All non-zero numbers must be normalized
(the sign bit of the mantissa must be the complement of the most significant bit
of the mantissa).

A1l floating-point operations work on a "“stack" basis. The argument(s) are
"popped" from a stack in the Apple's memory, and the result is "pushed" onto the
stack. The B address is always the address of the first byte (lowest mantissa
byte) of the top item in the stack. (Thus, the B address must always be properly
set before using any of the floating-point operations.) The stack expands toward
lower-numbered memory addresses.

4-5 PROM Routines Processor Card

The PUSH command (code 33 or 21 hex) is used to push a floating-point
number onto the stack. It decrements the B address by 5. The Apple program
must keep its own copy of the B address so the floating-point number can be
written into the new top-of-stack location reflected by the new B address value.

The POP command (code 34 or 22 hex) is used to pop a floating-point number
off the stack. It increments the B address by 5.

The FLOAT command (code 35 or 23 hex) is used to convert an integer into a
floating point number. The top-of-stack must be a 4-byte signed two's complement
integer stored low byte first in the mantissa bytes, and the byte which is
normally the exponent must be 159 (9F hex). The FLOAT command consists only of
the normalize function.

The FIX command (code 36 or 24 hex) computes the greatest integer function
for the top-of-stack. The result is not normalized, and the exponent is always
159; thus the mantissa bytes represent a two's complement 4-byte integer.

The following commands perform the indicated function, taking the required
argument(s) off the stack, and pushing the result on the stack. Error conditions
are not reported. Overflows are returned as (2A32-1)*2A127 or -(2A159), and
underflows are returned as p. "T0S" is top-of-stack number, and "NOS" is next-
to-top-of-stack number.

DECIMAL CODE HEX CODE FUNCTION

37 25 TOS=NOS+T0S

38 26 T0S=NOS-TOS

39 27 T0S=NOS*T0S

49 28 T0S=N0S/T0S

41 29 T0S=-T0S

42 2A T0S=L0G TOS (base 2)
43 2B T0S=2ATOS

44 2C T0S=NOSATOS

45 2D T0S=SIN TOS (radians)
46 2E T0S=C0S TOS (radians)
47 2F TOS=ATN TOS (radians)

The following constants may be helpful:
LOW HIGH EXP VALUE

95 1D 55 5C 81 log base 2 of e
FC PB B9 58 8P log base e of 2
42 4D 19 4D 7F log base 1P of 2
51 ED 87 64 82 pi

Processor Card PROM Routines 4-6

DIRECT CALLS IN 8088

The floating-point routines can be called directly from 8088 programs.
[8088 machine language programming is not described in this manual. The Intel
"iAPX 88 Book", available from Intel Corporation (3065 Bowers Avenue; Santa
Clara, CA 95@51; Attn.: Literature Department) describes the 8088 processor. This
book is also available from ALF, order number 11-2-2.] Intra-segment calls must
be used. (This can be accomplished by setting the code segment to FFPP hex and
locating your program in the on-board RAM.) The arguments shown as NOS and TOS
(above) must be placed in 8p88 registers. DI is the two least significant bytes
of the mantissa of TO0S, BP is the two most significant mantissa bytes, and DL is
the exponent. For NOS, these registers are SI, BX, and CL. The addresses are as
follows:

FLOAT PBFA
FIX PB97
ADD PBB4
SUBTRACT PBB1
MULTIPLY pC36
DIVIDE PC7F
NEGATE pC25
LOGARITHM fD3B
ANTI-LOG pD94
EXPONENTIATION D82
SINE PDFC
COSINE PDF1
ARCTANGENT PE4E

“AVAILABLE” COMMAND CODES

The available command codes (48-247 or 3p-F7) can be used to call 8088
subroutines. Codes must be used from 48 up. With data segment set to PPPP,
location 2P (14 hex) must be set to the first unused command code (this is
normally set to 48, of course). Locations 21-24 (15-18 hex) must be set to the 4-
byte memory reference (Dword) of the user-provided command address table
(containing the 4-byte memory references (Dwords) of each command, starting with
code 48). These 5 bytes can be set using the MOVE DATA command. Your command
will be called with an inter-segment call. AL will be the command code used.
Locations 3P-44 (1E-2C) are the parameters sent to ports 1-15. Your command must
return with an inter-segment return, and all registers may be changed except SP
and SS. RAM locations p-511 (P-1FF) must not be changed (except 2p-24, 14-18
hex). Current stack contents, beginning at 2047 (7FF) and going to SP must not be
changed (SS is PPPP).

4-7 PROM Routines Processor Card

THE APPLE DISK |i

Apple's "Disk J[" drive controller is designed to function only when DMA is
not being used. Logically, it should activate the DMA OUT line during read or
write operations to assure proper operation; unfortunately it doesn't use DMA OUT
and the card is normally located in a low-priority slot (the highest priority slot
would have to be used to prevent conflicting DMA usage). Since the drive
controller card does not indicate that DMA cannot be used, the Processor Card
will use DMA regardless of the disk controller's needs.

This means that care must be taken to avoid having the Processor Card use
DMA while the Apple controller is writing a disk. The sector written would be
unreadable. If large numbers of DMA transfers are done, the entire track can be
rendered unreadable. Less seriously, Processor Card DMA operations will cause
errors during disk read operations (but in this case the disk itself is not
changed). For proper operation, it is necessary to add a DMA OUT line to the
disk controller card and place it in a Tower-numbered slot than the Processor
Card.

Since changing the disk controller is probably undesirable, normally the
Processor Card is programmed in such a way that it does not read or write the
Apple's memory (which would require a DMA operation) while the disk is being
read or written. FTL and MET are written to avoid DMA/disk controller conflicts.

Problems occur mainly with Processor Card commands that take a long time
to execute, as the Apple rriay go on to do a disk operation while the Processor
Card is still executing the command. A very large block move command, for
example, might take seconds to execute. If the Apple's memory is involved, the
disk should not be used during command execution.

The on-board PROM routines are written so the most significant bit read
from port P is 1 when the card is idle (and thus the disk can be used). Avoid
using. Apple's disk controller (and any similar controller) when this bit is p.

5
HARDWARE

5-1 Hardware

MEMORY ALLOCATION

ADDRESS

pPPPP-PPTFF
PP8PP-PLFFF
p2ppp-PFFFF
10PPP-1FFFF
2PPPP-2FFFF
30PPP-FEFFF
FFPPP-FFFFF

Apple side.

FUNCTION

On-board RAM.

Optional on-board RAM.

Reserved.

Apple memory.

Expansion port.

Reserved.

On-board PROM.

/0 ALLOCATION

ADDRESS FUNCTION
J1J] (write, with any data) Clear busy flag.
4] (read) Data from Apple I/0 interface.
p1 (read) I/0 interface status.
P2-7F Reserved.

80-FF Expansion port.

I/0 INTERFACE STATUS

Most significant bit is § when data is present (to be read from I/0 address
pP). Four least significant bits are the address the data was written to by the
Apple. See the PROM Routines section for a description of Apple I/0 from the

EXPANSION PORT

PIN # NAME
1 Al
2 AP
3 A5
4 A4
5 A6
6 A2
7 A7
8 A3
9 DMAE
19 EXTA
11 TRFE
12 DY

DESCRIPTION

Address line
Address line
Address line
Address line

Address line
Address line
Address line
Address line

oS -
) .

W NN O
e o o o

Drives
Drives
Drives
Drives

Drives
Drives
Drives
Drives

DMA cycle enable. 8 LS

Data line P.

16
16
16
16

16
16
16
16

loads.
Expansion port memory enable.
DMA transfer enable.

LS
LS
LS
LS

LS
LS
LS
LS

loads.
loads.
loads.
loads.

loads.
loads.
loads.
loads.

Drives 2P LS loads.
Drives 16 LS loads.

3 LS loads, drives 2.

Processor Card

Processor Card Hardware

13 ALE Address latch enable. Drives 4 LS loads.
14 D1 Data line 1. 3 LS loads, drives 2.

15 DEN Data enable. Drives 3 LS loads.

16 D2 Data 1ine 2. 3 LS Tloads, drives 2.

17 DT/R Data transmit/receive. Drives 2 LS loads.
18 D3 Data line 3. 3 LS loads, drives 2.

19 I0/M Input-output/memory. Drives 3 LS Toads.
29 D4 Data 1ine 4. 3 LS loads, drives 2.

21 WR Write. Drives 3 LS loads.

22 D5 Data 1ine 5. 3 LS loads, drives 2.
23 GND Signal ground.

24 D6 Data line 6. 3 LS loads, drives 2.

25 RD Read. Drives 3 LS loads.

26 D7 Data 1ine 7. 3 LS loads, drives 2.
27 GND Signal ground.

28 A8 Address line 8. Drives 2 LS loads.

29 GND Signal ground.

3P A9 Address line 9. Drives 2 LS loads.
31 RESET Reset. Drives 1P LS loads.

32 Alp Address Tline 10. Drives 2 LS loads.

33 CLK Clock. Drives 18 LS loads.

34 All Address line 11. Drives 2 LS loads.
35 Al5 Address line 15. Drives 2 LS loads.
36 Al2 Address line 12. Drives 2 LS loads.

37 XRDY Expansion port ready. 8 LS loads.

38 Al3 Address line 13. Drives 2 LS loads.
39 PCLK Peripheral clock. Drives 12 LS loads.
49 Al4 Address line 14. Drives 2 LS loads.

The following lines are not normal 8088 lines:

DMAE: when held low through the expansion port, it causes the Processor
Card to generate an Apple DMA cycle. During a DMA write, the data to be
written must be enabled directly to the Apple bus data lines. TRFE indicates
when data must be enabled on the Apple bus (or can be read from the Apple
bus).

EXTA: goes Tow when any location from 2pPpP-2FFFF is accessed.

TRFE: goes low when the Apple bus is in DMA mode (whether requested with

5-2

5-3 Hardware Processor Card

DMAE or through normal Processor Card operations).
The ribbon cable mating connector for the expansion port is a 3M
Scotchflex plug connector, 3M part number 3324-ppp1.

PROM SIZE SELECTION

The 2K/4K PROM jumper is used to select a 2K (2716) or 4K (2732) PROM in
socket position "d". When a wire is connected from the pad with an arrow to
the pad marked "2", a 2K PROM is selected. When a wire is connected from the
pad with an arrow to the pad marked "4", a 4K PROM is selected. 350 ns PROMS
must be used. See the schematic for proper address and data line mapping.

ON-BOARD EXPANSION

The on-board RAM can be expanded from 2K to 8K in 2K increments simply by
inserting additional memory chips. To expand the memory from 2K to 4K, a chip
is plugged into socket position "cl". To expand to 6K, also insert a chip in
position “c2". For 8K, also use position "c3". The Toshiba TMM2P16P memory
chip should be used. (Other 2K by 8 RAM chips with 150 ns access times may be
compatible.) Extreme care must be used to protect the memory chip from static
electricity once it is removed from its protective packaging. Insert or
remove memory chips only when the card is not plugged into the Apple. Care
must be taken that the pin 1 indicator is to the top of the circuit card (the
same as the factory-installed chip).

DMA TECHNICAL DETAILS

The Processor Card is not necessarily compatible with other products that
use DMA because Apple has not selected a standard DMA procedure. The rules
for compatibility with the system used in the Processor Card are as follows:

1. A card must not change its DMA OUT line while Q3 is low and phase
is high. (A flip-flop clocked by a negative transition of Q3 can be used to
generate DMA OUT.)

2. A card must pull the DMA Tine low only when phase P goes low and only
if its DMA IN line is high at that time.

3. A card must stop pulling the DMA line low at the next negative
transition of phase § if its DMA IN line is low at that time.

4. A card must have its DMA OUT Tline low prior to pulling the DMA line
low. DMA OUT must stay low while DMA is pulled low.

The AD8P88 will hold DMA Tow for only one cycle of phase p. However, it
does not return DMA OUT to high until Q3 goes low just before the negative
transition of phase P in the cycle following the DMA cycle. This allows the
Apple to run for one cycle following any DMA access (or group of accesses from
multiple cards), thus preventing loss of register contents.

5-4

Hardware

Processor Card

74 3
z A X M A
° E o . L] e
nilylls|li]|blld u A [!
() L] ® o LJ (] c m
} = p lloo|l 12| 2o || g2 LY e
[ovlllnnllnlllnnlll-l-lw . ° ° ° °
mm_llﬂl.lIlllIllllllllll”_—-
GLESTWL GLESTVL v0STw. G21STWL £2SWL
z A X M A
€LEISYL ¥¥2IS¥L v¥2IShL vv2oSvL VYvLSTwL 6E£1STWL 2€STWL 0TISTHL
n S b u w 3 r L
€LEISYL ¥¥20S¥L €L£ISHL
il J d Yv/STL $0STHL
y b
¥828 8808 V2€L2 9TOZWWL 9TOZWWL 9TOZWWL 9TOZWW1 Yv/STvZ 00STH/
3 3 p 02 19 22 €0 q e

SUOI}OBUUOD jeuldju] <=

snq uoisuedxe 8g08aAY AU
uoI99uuod snq ajddy _U

s|eulwJa] dljewssyos

Processor Card

Hardware

5-5

oa
: 2 (7 SG—M {02 azy; - oV
3
\ < ¢da > -ml-m _tlo} , aif I w
\\\ -~ €a g IJ”:mFFOm ael. T 2v
= Sa > U2y avf 1 ev
9l @O m<ﬂ - Yo N%@
00 LV = T
2 EVfs o W_MU m
ov 0229, oav 00 N3
[T No cv [4 Ll T8 cMu N OD
5 W v—JoOm ac; SLav 5 S -
o ol A S oz agz— 1a
vO _ 8v 5 10§ QSg —leav
5 e 5 EV >rSov 4 Ve ~jeav = > MP aif; = za
- j v o8 a8 —ivay 1S3l @08 = 08— €d
o i . o104 Al 1 va
30 OV SV —Soz agj; -sav a10H : -
oﬂm« F<w v >-*09 a9 519aV HANI 09 O d
. : LY >rfolng ks Jzav AN 9
w130 OWig < N =
8Y)z {8V XW/NW
51|40l 6V
5 Ko]] o
1|90! LY h -
€0l rA\ M
: [2S AS@
< 71180l S Fs T°U
| (SOl vV
Hw i 5i{cOl IV —
S+ ot 146}l €S/9IV ME
02|30 vS/LIV a3
’ 1e| 6L e¢
iy W/0lI
%)

8L

112d DA{310d kAGH

5-6

Hardware

Processor Card

A1ae 0L = 0a >
e T AR O T4

saL Ol
8L as 08 61
L as 972 ol
[as MED
as osk;
ar ovf;
(00 N3
3

18

¥

€l
g
sswingi
00 |5 lwaJ\V/m,ﬂ u_zw.H 5z] ONO
5

—
i
N

314

1a S+o H. =| AS+

€4 5

a4 H oW
uj |

va
Sa ;
94
a4

Sy

o<Bl—<3ve

ov |
v
v
eV
vl
v |
ov
v |
w< o]
6v
o

o2~ D)

©
AT

©
o

[

£

—
=
~2
/h
)
e

AT
(S

©

(43

G+
LY —| Y1 VWa

[

@
A
~

€l

%

(44

o
-

vi

m@nv_O: 50 !UJAnﬁ €0
0

a~ & 00

i

e

[1

=)

Sl

viv
Sy

13

pas

Processor Card

Hardware

5-7

o \J
N — 4
ooy (o 530508 1E s Ts oa s 0B puel g posras A oo L A\
el o5 f =\ NS
A7 92 o o—H Ve o Ly
LE. [6[[p Biojolola o o/ g ol6[6 oo CERICCIRS = It
e » == 110 A Y 7 4 o - ¢| :) 9
olofele aléololo ol | |E910/0[elelo0 [IC) ¢ pogp LTS > sonciieu o
GHNIE EANE 1 fiseaas S A == Y/ e N 2
skolofololée ISNNGE A i UOCLI0 B JEOEEENER WSIARENTESS Ho]
cplsfef Joie nBiod N o
o ,ww fo 6lojon/ e ol Ha'o o e
ﬁ Z 20 v m .L 0 e »
£ic = : e e)
ol oHHHHK D;Fl& Z oto— B — oo [0 - SIS +
st = to— t 153 S
SisHagisiy = o) oo ° S | =
-8\ oo ove T N S N ° = | 2% o, P
O — Lo i 81—0 0 = _
N o0No—— NG o0)_._ N 1 pul \l-Jm e L.
4 e e ——0n Z Z A1 — s,
SSN e BN \tad Eiasiad 8-
=N e = 6]6]6]6]6]616 6|66 6 66 6 ©
= NN 18610
nCANCIL o
H : e e o
33 Atuse g0l $00p00000 polojdadoa__Abavo)
: A== o —s 1] H—o _Mﬂ‘ mﬁjﬁ .
> ° o oloe °
= o[l S Yo vle's OV s ssishls >N
I 2 9o¢ > o DEOCEE fo.0]p/00[6l0 RTTH, ololo & AP
” N o2 ER) of === S S I 1 B7= AT H-o
” >] Mo, vh.cﬂ\m “ ._m“ 506000 b[00/0n olo0 90 00 Hb\\ﬂ\ﬂ .. 2 5 \é
> e o o/ off £ S Ol
a > mu L) le N otH] - Ho | RS r‘% dmd
o % : 1 . P N 3
L & o s "0 OtH o H
+ et 77 .U_|r.\\4. oHHl[[6HoZo] SN0 0 oliHHe 6 ..%“_hc o|o|olofo]
olo[o[o)o/o] glolol8 i e /01 A Z0 otHiHo f—d [o | Mv rw
: ; SN < ~0 o+ o) - >
¥ Bs = 7 ©) e — >0 O N0/ | ln_
| o—H - X CHe = | 2
s olal S = | Y[iparsas M T NiL) a> —o = LHo /ffofolg0(6/0 5 S o[g o
11911 1 - v.a ~ A - -
2-1-AB 50 Jo8 /Jv_.wlo. Y v
VIE o T — o0 ~Z—%
>~ 0~ e 0 7 —o r 4
@._mw._ < o S o

Processor Card Hardware

o

AR ARG
ot b i

FRY
TASE
0" Gist??‘

LR R R R R

£ ODIVIDWHONSNG
- -

5-8

INDEX

4-1
4-6

8088 conventions:
8p88 direct calls:

Apple Ile:
Apple Disk][:

12, 2-2
4-7

Busy flag: 4-1, 4-3, 4-7

Constants: 4-5

Disk software: 1-2

DMA: 5-3

DOS 3.2: 1-
1

5 3
DOS 3.3: Z

2, 3-4
2, 2-1 to 2-2, 3-4
Expansion port: 5-1 to 5-3
2-2 to 2-3

FTL, auto slot: 2-2
FTL introduction: 2-1
FTL, is it in memory?:
FTL, losing: 2-1 to 2-2

FTL.B:

2-2

FTL, setting up yourself: 2-2 to 2-3
FTL stays in memory: 2-1

FTL, using: 2-1

I/0 allocation: 5-1

1/0 interface status: 5-1

I/0 ports: 4-1, 4-3, 5-1

iAPX 88 book: 4-6

Installing the card: 1-1

Integer BASIC: 2-1 to 2-2

Language card: 1-2, 2-1

MET.B: 3-7 to 3-8

Memory allocation: 5-1

Memory reference, 4-byte: 4-2

MET and FTL: 3-1, 3-3

MET buffer variable: 3-7

MET, changing parameters: 3-6 to 3-7

MET data, reading directly:
MET introduction: 3-1
MET, picking a resolution:
MET, restarting: 3-8
MET, setting up: 3-1
MET, setting up yourself:
MET timing: 3-2 to 3-3
MET READ: 3-3 to 3-7
MET READ buffer variable:
MET READ, changing paramet
MET READ commands: 3-4
MET READ Tines variable:
MET READ plot mode: 3-6
MET READ view mode: 3-4 t
Parameter ports: 4-1
Photo: 5-8
PROM commands: 4-1 to 4-5
PROM commands, "available":
PROM commands, integer mat
PROM
PROM commands, miscellaneo
PROM routines introduction:
PROM size selection: 5-3
Protected DOS 3.3 disks: 2
Radio-TV interference: 1-2
RAM card: 1-2, 2-1
RAM expansion: 5-3
Random: 4-2, 4-3
Repair illustration: 5-7
Schematic: 5-4 to 5-6
STot number:
4-1, 4-3

Tips: 1-1
Typing "FP": 1-2

Using two cards: 1-3

commands, floating point:

2-1, 2-2, 3-

3-7

3-1 to 3-2

3-7 to 3-8

3-7

ers: 3-6 to 3-7

3-7

o 3-6

4-6
h: 4-4

4-4 to 4-5
us: 4-2
4-1

-1 to 2-2

2, 3-3, 3-4, 3-7,

